scholarly journals LOCALIZATION AND RECOGNITION OF DYNAMIC HAND GESTURES BASED ON HIERARCHY OF MANIFOLD CLASSIFIERS

Author(s):  
M. Favorskaya ◽  
A. Nosov ◽  
A. Popov

Generally, the dynamic hand gestures are captured in continuous video sequences, and a gesture recognition system ought to extract the robust features automatically. This task involves the highly challenging spatio-temporal variations of dynamic hand gestures. The proposed method is based on two-level manifold classifiers including the trajectory classifiers in any time instants and the posture classifiers of sub-gestures in selected time instants. The trajectory classifiers contain skin detector, normalized skeleton representation of one or two hands, and motion history representing by motion vectors normalized through predetermined directions (8 and 16 in our case). Each dynamic gesture is separated into a set of sub-gestures in order to predict a trajectory and remove those samples of gestures, which do not satisfy to current trajectory. The posture classifiers involve the normalized skeleton representation of palm and fingers and relative finger positions using fingertips. The min-max criterion is used for trajectory recognition, and the decision tree technique was applied for posture recognition of sub-gestures. For experiments, a dataset “Multi-modal Gesture Recognition Challenge 2013: Dataset and Results” including 393 dynamic hand-gestures was chosen. The proposed method yielded 84–91% recognition accuracy, in average, for restricted set of dynamic gestures.

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 222
Author(s):  
Tao Li ◽  
Chenqi Shi ◽  
Peihao Li ◽  
Pengpeng Chen

In this paper, we propose a novel gesture recognition system based on a smartphone. Due to the limitation of Channel State Information (CSI) extraction equipment, existing WiFi-based gesture recognition is limited to the microcomputer terminal equipped with Intel 5300 or Atheros 9580 network cards. Therefore, accurate gesture recognition can only be performed in an area relatively fixed to the transceiver link. The new gesture recognition system proposed by us breaks this limitation. First, we use nexmon firmware to obtain 256 CSI subcarriers from the bottom layer of the smartphone in IEEE 802.11ac mode on 80 MHz bandwidth to realize the gesture recognition system’s mobility. Second, we adopt the cross-correlation method to integrate the extracted CSI features in the time and frequency domain to reduce the influence of changes in the smartphone location. Third, we use a new improved DTW algorithm to classify and recognize gestures. We implemented vast experiments to verify the system’s recognition accuracy at different distances in different directions and environments. The results show that the system can effectively improve the recognition accuracy.


2018 ◽  
Vol 14 (7) ◽  
pp. 155014771879075 ◽  
Author(s):  
Kiwon Rhee ◽  
Hyun-Chool Shin

In the recognition of electromyogram-based hand gestures, the recognition accuracy may be degraded during the actual stage of practical applications for various reasons such as electrode positioning bias and different subjects. Besides these, the change in electromyogram signals due to different arm postures even for identical hand gestures is also an important issue. We propose an electromyogram-based hand gesture recognition technique robust to diverse arm postures. The proposed method uses both the signals of the accelerometer and electromyogram simultaneously to recognize correct hand gestures even for various arm postures. For the recognition of hand gestures, the electromyogram signals are statistically modeled considering the arm postures. In the experiments, we compared the cases that took into account the arm postures with the cases that disregarded the arm postures for the recognition of hand gestures. In the cases in which varied arm postures were disregarded, the recognition accuracy for correct hand gestures was 54.1%, whereas the cases using the method proposed in this study showed an 85.7% average recognition accuracy for hand gestures, an improvement of more than 31.6%. In this study, accelerometer and electromyogram signals were used simultaneously, which compensated the effect of different arm postures on the electromyogram signals and therefore improved the recognition accuracy of hand gestures.


Author(s):  
Xian Wang ◽  
Paula Tarrío ◽  
Ana María Bernardos ◽  
Eduardo Metola ◽  
José Ramón Casar

Many mobile devices embed nowadays inertial sensors. This enables new forms of human-computer interaction through the use of gestures (movements performed with the mobile device) as a way of communication. This paper presents an accelerometer-based gesture recognition system for mobile devices which is able to recognize a collection of 10 different hand gestures. The system was conceived to be light and to operate in a user-independent manner in real time. The recognition system was implemented in a smart phone and evaluated through a collection of user tests, which showed a recognition accuracy similar to other state-of-the art techniques and a lower computational complexity. The system was also used to build a human-robot interface that enables controlling a wheeled robot with the gestures made with the mobile phone


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Peng Liu ◽  
Xiangxiang Li ◽  
Haiting Cui ◽  
Shanshan Li ◽  
Yafei Yuan

Hand gesture recognition is an intuitive and effective way for humans to interact with a computer due to its high processing speed and recognition accuracy. This paper proposes a novel approach to identify hand gestures in complex scenes by the Single-Shot Multibox Detector (SSD) deep learning algorithm with 19 layers of a neural network. A benchmark database with gestures is used, and general hand gestures in the complex scene are chosen as the processing objects. A real-time hand gesture recognition system based on the SSD algorithm is constructed and tested. The experimental results show that the algorithm quickly identifies humans’ hands and accurately distinguishes different types of gestures. Furthermore, the maximum accuracy is 99.2%, which is significantly important for human-computer interaction application.


Author(s):  
Dhanashree Shyam Bendarkar ◽  
Pratiksha Appasaheb Somase ◽  
Preety Kalyansingh Rebari ◽  
Renuka Ramkrishna Paturkar ◽  
Arjumand Masood Khan

Individuals with hearing hindrance utilize gesture based communication to exchange their thoughts. Generally hand movements are used by them to communicate among themselves. But there are certain limitations when they communicate with other people who cannot understand these hand movements. There is a need to have a mechanism that can act as a translator between these people to communicate. It would be easier for these people to interact if there exists direct infrastructure that is able to convert signs to text and voice messages. As of late, numerous such frameworks for gesture based communication acknowledgment have been developed. But most of them are made either for static gesture recognition or dynamic gesture recognition. As sentences are generated using combinations of static and dynamic gestures, it would be simpler for hearing debilitated individuals if such computerized frameworks can detect both the static and dynamic motions together. We have proposed a design and architecture of American Sign Language (ASL) recognition with convolutional neural networks (CNN). This paper utilizes a pretrained VGG-16 architecture for static gesture recognition and for dynamic gesture recognition, spatiotemporal features were learnt with the complex architecture, called deep learning. It contains a bidirectional convolutional Long Short Term Memory network (ConvLSTM) and 3D convolutional neural network (3DCNN) and this architecture is responsible to extract  2D spatio temporal features.


2020 ◽  
Vol 10 (11) ◽  
pp. 3680 ◽  
Author(s):  
Chunyong Ma ◽  
Shengsheng Zhang ◽  
Anni Wang ◽  
Yongyang Qi ◽  
Ge Chen

Dynamic hand gesture recognition based on one-shot learning requires full assimilation of the motion features from a few annotated data. However, how to effectively extract the spatio-temporal features of the hand gestures remains a challenging issue. This paper proposes a skeleton-based dynamic hand gesture recognition using an enhanced network (GREN) based on one-shot learning by improving the memory-augmented neural network, which can rapidly assimilate the motion features of dynamic hand gestures. Besides, the network effectively combines and stores the shared features between dissimilar classes, which lowers the prediction error caused by the unnecessary hyper-parameters updating, and improves the recognition accuracy with the increase of categories. In this paper, the public dynamic hand gesture database (DHGD) is used for the experimental comparison of the state-of-the-art performance of the GREN network, and although only 30% of the dataset was used for training, the accuracy of skeleton-based dynamic hand gesture recognition reached 82.29% based on one-shot learning. Experiments with the Microsoft Research Asia (MSRA) hand gesture dataset verified the robustness of the GREN network. The experimental results demonstrate that the GREN network is feasible for skeleton-based dynamic hand gesture recognition based on one-shot learning.


2021 ◽  
Vol 336 ◽  
pp. 06003
Author(s):  
Na Wu ◽  
Hao JIN ◽  
Xiachuan Pei ◽  
Shurong Dong ◽  
Jikui Luo ◽  
...  

Surface electromyography (sEMG), as a key technology of non-invasive muscle computer interface, is an important method of human-computer interaction. We proposed a CNN-IndRNN (Convolutional Neural Network-Independent Recurrent Neural Network) hybrid algorithm to analyse sEMG signals and classify hand gestures. Ninapro’s dataset of 10 volunteers was used to develop the model, and by using only one time-domain feature (root mean square of sEMG), an average accuracy of 87.43% on 18 gestures is achieved. The proposed algorithm obtains a state-of-the-art classification performance with a significantly reduced model. In order to verify the robustness of the CNN-IndRNN model, a compact real¬time recognition system was constructed. The system was based on open-source hardware (OpenBCI) and a custom Python-based software. Results show that the 10-subject rock-paper-scissors gesture recognition accuracy reaches 99.1%.


Author(s):  
Smit Parikh ◽  
Srikar Banka ◽  
Isha Lautrey ◽  
Isha Gupta ◽  
Prof Dhanalekshmi Yedurkar

The use of a physical controller such as a mouse, a keyboard for human computer interaction hinders the natural interface since the user and computer have a high barrier. Our aim is to create an application that controls some basic features of computers using hand gestures through an integrated webcam to resolve this issue. A Hand Gesture Recognition system detects gestures and translates them into specific actions to make our work easier. This can be pursued using OpenCV to capture the gestures which will be interfaced using Django, React.Js and Electron. An algorithm named YOLO is used to train the system accordingly. The gestures will get saved inside the DBMS. The main result expected is that the user will be able to control the basic functions of the system using his/her hand gestures and hence providing them utmost comfort.


2014 ◽  
Vol 14 (01n02) ◽  
pp. 1450006 ◽  
Author(s):  
Mahmood Jasim ◽  
Tao Zhang ◽  
Md. Hasanuzzaman

This paper presents a novel method for computer vision-based static and dynamic hand gesture recognition. Haar-like feature-based cascaded classifier is used for hand area segmentation. Static hand gestures are recognized using linear discriminant analysis (LDA) and local binary pattern (LBP)-based feature extraction methods. Static hand gestures are classified using nearest neighbor (NN) algorithm. Dynamic hand gestures are recognized using the novel text-based principal directional features (PDFs), which are generated from the segmented image sequences. Longest common subsequence (LCS) algorithm is used to classify the dynamic gestures. For testing, the Chinese numeral gesture dataset containing static hand poses and directional gesture dataset containing complex dynamic gestures are prepared. The mean accuracy of LDA-based static hand gesture recognition on the Chinese numeral gesture dataset is 92.42%. The mean accuracy of LBP-based static hand gesture recognition on the Chinese numeral gesture dataset is 87.23%. The mean accuracy of the novel dynamic hand gesture recognition method using PDF on directional gesture dataset is 94%.


Sign in / Sign up

Export Citation Format

Share Document