scholarly journals Large-scale slope failure and active erosion occurring in the southwest Ryukyu fore-arc area

2001 ◽  
Vol 1 (4) ◽  
pp. 203-211 ◽  
Author(s):  
T. Matsumoto ◽  
M. Kimura ◽  
M. Nakamura ◽  
T. Ono

Abstract. The southwestern Ryukyu area east of Taiwan Island is an arcuate boundary between Philippine Sea Plate and Eurasian Plate. The topographic features in the area are characterised by (1) a large-scale amphitheatre off Ishigaki Island, just on the estimated epicentre of the tsunamigenic earthquake in 1771, (2) lots of deep sea canyons located north of the amphitheatre, (3) 15–20 km wide fore-arc basin, (4) 15–20 km wide flat plane in the axial area of the trench, (5) E-W trending half grabens located on the fore-arc area, etc., which were revealed by several recent topographic survey expeditions. The diving survey by SHINKAI6500 in the fore-arc area on a spur located 120 km south of Ishigaki Island was carried out in 1992. The site is characterised dominantly by rough topography consisting of a series of steep slopes and escarpments. A part of the surface is eroded due to the weight of the sediment itself and consequently the basement layer is exposed. The site was covered with suspended particles during the diving, due to the present surface sliding and erosion. The same site was resurveyed in 1997 by ROV KAIKO, which confirmed the continuous slope failure taking place in the site. Another example that was observed by KAIKO expedition in 1997 is a largescale mud block on the southward dipping slope 80 km south of Ishigaki Island. This is apparently derived from the shallower part of the steep slope on the southern edge of the fan deposit south of Ishigaki Island. The topographic features suggest N-S or NE-SW tensional stress over the whole study area. In this sense, the relative motion between the two plates in this area is oblique to the plate boundary. So, the seaward migration of the plate boundary may occur due to the gravitational instability at the boundary of the two different lithospheric structures. This is evidenced by a lack of accretionary sediment on the fore-arc and the mechanism of a recent earthquake which occurred on 3 May 1998 in the Philippine Sea Plate 250 km SSE of Ishigaki Island.

1994 ◽  
Vol 84 (5) ◽  
pp. 1387-1396
Author(s):  
Shigeo Kinoshita

Abstract The attenuation characteristics of shear waves in the crust of the southern Kanto area, central Japan, were estimated using strong-motion data, including acceleration data recorded in the pre-Tertiary basement rocks by means of downhole observation. The quality factor Qs(f) was determined for a range of discrete frequencies from 0.5 to 16 Hz from the analysis of data from 13 local earthquakes with focal depths of less than about 50 km that occurred in the Philippine Sea plate and in the boundary zone between the lower part of the Eurasian plate and the upper part of the Philippine Sea plate. The estimated 1/Qs(f) shows a peaked structure in this frequency range on the assumption that the geometrical spreading exponent is -1 (body waves). The estimated peak 1/Qs(f) is of the order of 10-2 at 0.8 Hz.


2001 ◽  
Vol 138 (6) ◽  
pp. 633-651 ◽  
Author(s):  
C. P. CHANG ◽  
J. ANGELIER ◽  
C. Y. HUANG ◽  
C. S. LIU

The analysis of ‘mélanges’ of various types (sedimentary, diapiric, tectonic and polygenetic) is generally difficult and depends on a variety of criteria. However, understanding the nature and origin of mélanges is crucial to deciphering the evolution of some mountain belts. The Lichi Mélange of the Taiwan Coastal Range is juxtaposed against remnant forearc basin sequences by thrust faults and is composed of exotic ophiolite and sedimentary blocks, with sizes ranging from metres to kilometres, and coherent turbidite beds, all embedded in a sheared scaly argillaceous matrix. The Lichi Mélange has been interpreted either as a subduction complex, or as an olistostrome. By separating four main deformation levels based on the degree of disruption within the Lichi Mélange and adjacent sedimentary rocks, we have made new detailed geological maps and structural profiles in two key areas of the Lichi Mélange. We paid particular attention to the original stratigraphic relationships between the mélange and the adjacent flysch formation. Our field results compared with submarine seismic profiles suggest that the present-day structure of the Lichi Mélange results mainly from the shearing of lower forearc basin sequences, rather than from a subduction complex or a mere olistostrome. In Late Miocene time, because lithospheric subduction turned into arc–continent collision in the southern Taiwan area, the site of the proto-Manila trench changed from an active plate boundary into a deformation zone with several thrusts. A new plate suture zone between the Eurasian plate (eastern Central Range) and the Philippine Sea plate (Coastal Range) was therefore formed along the Longitudinal Valley. The Longitudinal Valley originated as a submarine arc–prism boundary, an innate weak zone within the overriding plate, and has become a prominent tectonic feature of the arc–continent collision. This inference is supported by observations on the Lichi Mélange in the Coastal Range and the Huatung Ridge off southeastern Taiwan.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Ching-Chou Fu ◽  
Lou-Chuang Lee ◽  
Tsanyao Frank Yang ◽  
Cheng-Horng Lin ◽  
Cheng-Hong Chen ◽  
...  

Taiwan is tectonically situated in an oblique collision zone between the Philippine Sea Plate (PSP) and the Eurasian Plate (EP). Continuous observations of gamma rays at the Yangmingshan (YMSG) station and soil radon at the Tapingti (TPT) station were recorded in the volcanic area and around a major fault zone, respectively, in Taiwan for seismic studies. A number of anomalous high gamma ray counts and radon concentrations at certain times were found. It is noted that significant increases of soil radon concentrations were observed and followed by the increase in gamma rays a few days to a few weeks before earthquakes that occurred in northeastern Taiwan. Earthquakes such as these are usually related to the subduction of the PSP beneath the EP to the north along the subduction zone in northern Taiwan (e.g., ML=6.4, April 20, 2015). It is suggested that the preseismic activity may be associated with slow geodynamic processes at the subduction interface, leading to the PSP movement triggering radon enhancements at the TPT station. Furthermore, the further movement of the PSP might be blocked by the EP, with the accumulated elastic stress resulting in the increase of gamma rays due to the increase in porosity and fractures below the YMSG station. The continuous monitoring of the multiple parameters can improve the understanding of the relationship between the observed radon and gamma ray variations and the regional crustal stress/strain in north and northeastern Taiwan.


2019 ◽  
Vol 219 (2) ◽  
pp. 945-957
Author(s):  
Qing Liang ◽  
Chao Chen ◽  
Mikhail K Kaban ◽  
Maik Thomas

SUMMARY The evolution of the Philippine Sea Plate (PSP) since Jurassic is one of the key issues in the dynamics of lithosphere and mantle. The related studies benefited mostly from seismic tomography which provides velocity structures in the upper mantle. However, the upper-mantle structure is not well resolved compared to the continental areas due to the lack of seismic data in the Philippine Sea. We employ a 3-D gravity inversion constrained by an initial model based on the S-wave tomography (SL2013sv; Schaeffer & Lebedev 2013) to image the density structure of the upper mantle of the PSP and adjacent region. The resulting model shows a three-layer pattern of vertical high-low-high density variation in the upper mantle under the PSP. The thin high-density layer evidences for strong oceanic lithosphere in the West Philippine Sea. The relatively low dense mantle located below the PSP possibly originates from the asthenosphere. The PSP differs from the Pacific and the Indian-Australian plates in the whole depth range, while its structure is similar to the eastern Eurasian and Sunda plates. In the depth range, 200–300 km, the relative high-density zone beneath PSP extends to the Sunda Plate and to the eastern Eurasian Plate. We further estimated the conversion factor of our density model and the velocity model (SL2013sv; Schaeffer & Lebedev 2013) in order to locate the changes of compositional effects in the upper mantle. The negative conversion factor indicates that the compositional changes primarily affect the density anomalies beneath the PSP. We, therefore, describe the layered density structures as ‘sandwich’ pattern, which is unique and different from adjacent regions.


Sign in / Sign up

Export Citation Format

Share Document