scholarly journals Comparison between seismic and domestic risk in moderate seismic hazard prone region: the Grenoble City (France) test site

2012 ◽  
Vol 12 (2) ◽  
pp. 511-526 ◽  
Author(s):  
F. Dunand ◽  
P. Gueguen

Abstract. France has a moderate level of seismic activity, characterized by diffuse seismicity, sometimes experiencing earthquakes of a magnitude of more than 5 in the most active zones. In this seismicity context, Grenoble is a city of major economic and social importance. However, earthquakes being rare, public authorities and the decision makers are only vaguely committed to reducing seismic risk: return periods are long and local policy makers do not have much information available. Over the past 25 yr, a large number of studies have been conducted to improve our knowledge of seismic hazard in this region. One of the decision-making concerns of Grenoble's public authorities, as managers of a large number of public buildings, is to know not only the seismic-prone regions, the variability of seismic hazard due to site effects and the city's overall vulnerability, but also the level of seismic risk and exposure for the entire city, also compared to other natural or/and domestic hazards. Our seismic risk analysis uses a probabilistic approach for regional and local hazards and the vulnerability assessment of buildings. Its applicability to Grenoble offers the advantage of being based on knowledge acquired by previous projects conducted over the years. This paper aims to compare the level of seismic risk with that of other risks and to introduce the notion of risk acceptability in order to offer guidance in the management of seismic risk. This notion of acceptability, which is now part of seismic risk consideration for existing buildings in Switzerland, is relevant in moderately seismic-prone countries like France.

2020 ◽  
Author(s):  
Danhua Xin ◽  
James Daniell ◽  
Friedemann Wenzel

<p>The increasing loss of human life and property due to earthquakes in past years have increased the demand for seismic risk analysis for people to be better prepared for a potential threat. With the centralization and increase of population near urban centres and megacities, earthquakes occur in these places will cause much more damage than in the past. Therefore, the quantification of seismic risk is extremely important. Seismic risk modelling results provide the spatial distribution of expected damage and loss to exposed elements in an earthquake of different magnitudes. Therefore, seismic risk model can play a key role in the following aspects: (i) to assess the potential seismic hazard and loss for a target area from both deterministic and probabilistic view; (ii) to support the long-term plan for seismic risk mitigation and preparedness; (iii) to prioritize decision making in emergency response and disaster management; and (iv) to optimize retrofitting strategies.</p><p> </p><p>The modelling of seismic risk is typically composed of three modules, namely hazard, exposure and vulnerability. Different researchers have applied different assumptions in modelled the seismic hazard, exposed stock value and their vulnerability. Therefore, uncertainty exists in every step of the loss modelling chain. Thus, it is quite essential to evaluate the reasonability of the loss modelling results. One way to check the reasonability of modelled seismic loss is by comparison with real losses derived from post-earthquake surveys. China has a long history of recording historical devastating natural disasters including major losses during earthquakes and associated secondary events, which can be dating back to 1831 B.C. (Gu, 1989). Based on this bunch of damage information, Daniell (2014) developed an empirical loss function for mainland China during his PhD study. The advantage of this loss function compared with others is its normalization of historical loss with the socio-economic indicator (e.g. Human Development Index) and its calibration of damage functions of previous events to relate to the present conditions. Therefore, the loss estimated based on the empirical loss function developed in Daniell (2014) (tagged as “empirical loss”) will be used to evaluate losses estimated purely from modelled parameters (tagged as “analytical loss”).</p><p> </p><p>Our results indicate that for both deterministic and probabilistic hazard scenarios, the empirical loss and analytical loss are within two times’ difference (i.e. the empirical loss is generally larger than analytical loss, but it is lower than two times of the analytical loss). When the building vulnerability change is scaled in the empirical loss function of Daniell (2014) by using HDI and the soil amplification effect is integrated into the analytical loss modelling process, the difference between “empirical loss” and “analytical loss” will further decrease. This congruence verifies the reliability of the parameters we use in modelling seismic loss.</p>


2021 ◽  
Author(s):  
Abd el-aziz Khairy Abd el-aal ◽  
Shaimaa Ismail Mostafa ◽  
Abdullah Al-Enezi ◽  
Farah Al-Jeri ◽  
Ammar Al-Sayegh

Abstract The valuable results from this research are the first and essential step for assessing seismic risk in Kuwait. The increase in the urban development and construction of tall buildings and skyscrapers in Kuwait necessitated an estimate of the seismic risk for creating a unified seismic code for Kuwait. This research comes to make the necessarily step by assessing the seismic hazard and deaggregation in the State of Kuwait. For this purpose, the historical and instrumental seismic catalogs of Kuwait and the active Zagros Seismic Belt were primarily compiled, unifying the magnitudes, removing unnecessary earthquakes (seismicity declustering) and considering the completeness of the catalogs. Multi-seismotectonic models for Kuwait region incorporate earthquake focal mechanisms, seismicity pattern, and structural geological situation have been created to reduce epistemic uncertainty. The recurrence parameters as well as the maximum expected earthquake from each seismic source were fundamentally estimated. Appropriate ground motion attenuation relation within a logic tree formulation was mainly used in creating hazard maps. A state-of-the-art probabilistic approach is used herein to produce hazard maps at return periods of 75, 475, 975 and 2475 years (equivalent to 50%, 10%, 5% and 2%, respectively, probability of exceedance in 50 years) at periods of PGA, 0.1, 1 and 4 seconds. The computations of hazard maps were constructed using spacing grid of 0.2° × 0.2° all over the Kuwait area. Uniform hazard spectrum and deaggregation charts have been adopted for all six governorates of Kuwait. These results with vulnerability index are the main components for estimating the seismic risk of Kuwait.


Author(s):  
Elnaz Peyghaleh ◽  
Tarek Alkhrdaji

Abstract History of earthquake’s damages have illustrated the high vulnerability and risks associated with failure of water transfer and distribution systems. Adequate mitigation plans to reduce such seismic risks are required for sustainable development. The first step in developing a mitigation plan is prioritizing the limited available budget to address the most critical mitigation measures. This paper presents an optimization model that can be utilized for financial resource allocation towards earthquake risk mitigation measures for water pipelines. It presents a framework that can be used by decision-makers (authorities, stockholders, owners and contractors) to structure budget allocation strategy for seismic risk mitigation measures such as repair, retrofit, and/or replacement of steel and concrete pipelines. A stochastic model is presented to establish optimal mitigation measures based on minimizing repair and retrofit costs, post-earthquake replacement costs, and especially earthquake-induced large losses. To consider the earthquake induced loss on pipelines, the indirect loss due to water shortage and business interruption in the industries which needs water is also considered. The model is applied to a pilot area to demonstrate the practical application aspects of the proposed model. Pipeline exposure database, built environment occupancy type, pipeline vulnerability functions, and regional seismic hazard characteristics are used to calculate a probabilistic seismic risk for the pilot area. The Global Earthquake Model’s (GEM) OpenQuake software is used to run various seismic risk analysis. Event-based seismic hazard and risk analyses are used to develop the hazard curves and maps in terms of peak ground velocity (PGV) for the study area. The results of this study show the variation of seismic losses and mitigation costs for pipelines located within the study area based on their location and the types of repair. Performing seismic risk analysis analyses using the proposed model provides a valuable tool for determining the risk associated with a network of pipelines in a region, and the costs of repair based on acceptable risk level. It can be used for decision making and to establish type and budgets for most critical repairs for a specific region.


Author(s):  
Christoph Scheingraber ◽  
Martin Käser

Abstract. Probabilistic Seismic Risk Analysis is widely used in the insurance industry to model the likelihood and severity of losses to insured portfolios by earthquake events. Due to geocoding issues of address information, risk items are often only known to be located within an administrative geographical zone, but precise coordinates remain unknown to the modeler. In the first part of this paper, we analyze spatial seismic hazard and loss rate variation inside administrative geographical zones in western Indonesia. We find that the variation of hazard can vary strongly not only between different zones, but also between different return periods for a fixed zone. However, the spatial variation of loss rate displays a similar pattern as the variation of hazard, without depending on the return period. We build upon these results in the second part of this paper. In a recent work, we introduced a framework for stochastic treatment of portfolio location uncertainty. This results in the necessity to simulate ground motion on a high number of sampled geographical coordinates, which typically dominates the computational effort in Probabilistic Seismic Risk Analysis. We therefore propose a novel sampling scheme to improve the efficiency of stochastic portfolio location uncertainty treatment. Depending on risk item properties and measures of spatial loss rate variation, the scheme dynamically adapts the location sample size individually for insured risk items. We analyze the convergence and variance reduction of the scheme empirically. The results show that the scheme can improve the efficiency of the estimation of loss frequency curves.


2021 ◽  
Author(s):  
LIBO CHEN ◽  
Jianhong Zhou ◽  
Qiluan Zhou

Abstract When a structure is subjected to an earthquake sequence, the high rate of aftershocks after the mainshock and cumulative damage caused by the earthquake sequence make the structure very dangerous. Considering the uncertainty in seismic occurrences, structural damage is often predicted using a seismic risk analysis. This approach has become a main measure for seismic disaster assessment, and provides a reasonable reference for post-earthquake emergency response decision-making and pre-earthquake seismic design. Therefore, it is of great significance to study a seismic risk analysis considering the effect(s) of aftershocks. In this study, the aftershock hazard is estimated for a post-mainshock environment based on an aftershock probabilistic seismic hazard analysis. Considering the uncertainty regarding the mainshock and aftershock occurrences, in addition to the functional relationship between the mainshock and aftershock parameters, the aftershock seismic hazard is estimated for the pre-mainshock environment. The mainshock fragility and aftershock fragility of regular girder bridges are evaluated based on the Kunnath damage model. Finally, considering the damage accumulation in bridge structures, the seismic hazard and seismic fragility are combined to establish a post-mainshock aftershock seismic risk framework and pre-mainshock mainshock-aftershock seismic risk analysis framework. Based on these, the mainshock risk and mainshock-aftershock risk are compared to verify the importance of considering the aftershock effects in seismic disaster assessments. The aftershock risks for the bridges of different post-mainshock damage states are compared, and the influence of the initial damage after the mainshock on the damage to the structure in the post-mainshock environment is studied.


2020 ◽  
Vol 20 (7) ◽  
pp. 1903-1918
Author(s):  
Christoph Scheingraber ◽  
Martin Käser

Abstract. Probabilistic seismic risk analysis is widely used in the insurance industry to model the likelihood and severity of losses to insured portfolios by earthquake events. The available ground motion data – especially for strong and infrequent earthquakes – are often limited to a few decades, resulting in incomplete earthquake catalogues and related uncertainties and assumptions. The situation is further aggravated by the sometimes poor data quality with regard to insured portfolios. For example, due to geocoding issues of address information, risk items are often only known to be located within an administrative geographical zone, but precise coordinates remain unknown to the modeler. We analyze spatial seismic hazard and loss rate variation inside administrative geographical zones in western Indonesia. We find that the variation in hazard can vary strongly between different zones. The spatial variation in loss rate displays a similar pattern as the variation in hazard, without depending on the return period. In a recent work, we introduced a framework for stochastic treatment of portfolio location uncertainty. This results in the necessity to simulate ground motion on a high number of sampled geographical coordinates, which typically dominates the computational effort in probabilistic seismic risk analysis. We therefore propose a novel sampling scheme to improve the efficiency of stochastic portfolio location uncertainty treatment. Depending on risk item properties and measures of spatial loss rate variation, the scheme dynamically adapts the location sample size individually for insured risk items. We analyze the convergence and variance reduction of the scheme empirically. The results show that the scheme can improve the efficiency of the estimation of loss frequency curves and may thereby help to spread the treatment and communication of uncertainty in probabilistic seismic risk analysis.


2019 ◽  
Vol 26 (2) ◽  
pp. 4-8
Author(s):  
Toshkentboy Pardaev ◽  
◽  
Zhavli Tursunov

In the article : In the second half of the 20 century the process of preparation of local experts in South Uzbekistan industry changes in this field a clear evidence-based analysis of the problematic processes that resulted from the discriminatory policy toward the Soviet government-dominated local policy makers


Sign in / Sign up

Export Citation Format

Share Document