scholarly journals Dynamic decision making for dam-break emergency management – Part 2: Application to Tangjiashan landslide dam failure

2013 ◽  
Vol 13 (2) ◽  
pp. 439-454 ◽  
Author(s):  
M. Peng ◽  
L. M. Zhang

Abstract. Tangjiashan landslide dam, which was triggered by the Ms = 8.0 Wenchuan earthquake in 2008 in China, threatened 1.2 million people downstream of the dam. All people in Beichuan Town 3.5 km downstream of the dam and 197 thousand people in Mianyang City 85 km downstream of the dam were evacuated 10 days before the breaching of the dam. Making such an important decision under uncertainty was difficult. This paper applied a dynamic decision-making framework for dam-break emergency management (DYDEM) to help rational decision in the emergency management of the Tangjiashan landslide dam. Three stages are identified with different levels of hydrological, geological and social-economic information along the timeline of the landslide dam failure event. The probability of dam failure is taken as a time series. The dam breaching parameters are predicted with a set of empirical models in stage 1 when no soil property information is known, and a physical model in stages 2 and 3 when knowledge of soil properties has been obtained. The flood routing downstream of the dam in these three stages is analyzed to evaluate the population at risk (PAR). The flood consequences, including evacuation costs, flood damage and monetized loss of life, are evaluated as functions of warning time using a human risk analysis model based on Bayesian networks. Finally, dynamic decision analysis is conducted to find the optimal time to evacuate the population at risk with minimum total loss in each of these three stages.

2013 ◽  
Vol 13 (2) ◽  
pp. 425-437 ◽  
Author(s):  
M. Peng ◽  
L. M. Zhang

Abstract. An evacuation decision for dam breaks is a very serious issue. A late decision may lead to loss of lives and properties, but a very early evacuation will incur unnecessary expenses. This paper presents a risk-based framework of dynamic decision making for dam-break emergency management (DYDEM). The dam-break emergency management in both time scale and space scale is introduced first to define the dynamic decision problem. The probability of dam failure is taken as a stochastic process and estimated using a time-series analysis method. The flood consequences are taken as functions of warning time and evaluated with a human risk analysis model (HURAM) based on Bayesian networks. A decision criterion is suggested to decide whether to evacuate the population at risk (PAR) or to delay the decision. The optimum time for evacuating the PAR is obtained by minimizing the expected total loss, which integrates the time-related probabilities and flood consequences. When a delayed decision is chosen, the decision making can be updated with available new information. A specific dam-break case study is presented in a companion paper to illustrate the application of this framework to complex dam-breaching problems.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Fugang Xu ◽  
Hongwei Zhou ◽  
Jiawen Zhou ◽  
Xingguo Yang

Once a landslide dam bursts, its reservoir discharges quickly in a flood which will cause catastrophic damage to life and property downstream. For a specific landslide dam, the peak flow rate and the evolution of downstream flood are influenced by the shape and size of the dike breach when dam-break occurs. According to the general nature of landslide dams and field observations of dike-breach development patterns, a dike-breach propagation mode has been determined. By combining an improved empirical equation with knowledge of the dike-breach propagation mode, a mathematical model for forecasting dam-break flood routing has been developed and is presented here. Sensitivity analysis was then carried out based on the computed results for peak flow rate and the flood evolution curve under different parameters. The computed results showed that the width coefficient and the depth coefficient had similar effects on the dam-break flood but that the impact of the depth coefficient was more significant than that of the width coefficient. Finally, the proposed model was used to calculate the flood evolution for the Tangjiashan landslide dam. The computed results showed that the error between the simulated result and the measured data was less than 5%.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yan Zhu ◽  
Ming Peng ◽  
Shuo Cai ◽  
Limin Zhang

Mega earthquakes or serious rainfall storms often cause crowded landslides in mountainous areas. A large part of these landslides are very likely blocking rivers and forming landslide dams in series along rivers. The risks of cascading failure of landslide dams are significantly different from that of a single dam. This paper presented the work on risk-based warning decision making on cascading breaching of the 2008 Tangjiashan landslide dam and two small downstream landslide dams in a series along Tongkou River. The optimal decision was made by achieving minimal expected total loss. Cascade breaching of a series of landslide dams is more likely to produce a multi-peak flood. When the coming of the breaching flood from the upstream dam perfectly overlaps with the dam breaching flood of the downstream dam, a higher overlapped peak flood would occur. When overlapped peak flood occurs, the flood risk would be larger and evacuation warning needs to be issued earlier to avoid serious life loss and flood damages. When multi-peak flood occurs, people may be misled by the warning of the previous peak flood and suddenly attacked by the peak flood thereafter, incurring catastrophic loss. Systematical decision making needs to be conducted to sufficiently concern the risk caused by each peak of the breaching flood. The dam failure probability Pf linearly influences the expected life loss and flood damage but does not influence the evacuation cost. The expected total loss significantly decreases with Pf when the warning time was insufficient. However, it would not change much with Pf when warning time is sufficient.


2015 ◽  
Vol 13 (4) ◽  
pp. 359 ◽  
Author(s):  
G. Scott Dotson, PhD, CIH ◽  
Naomi L. Hudson, DrPH ◽  
Andrew Maier, PhD, DABT, CIH

Emergency Management and Operations (EMO) personnel are in need of resources and tools to assist in understanding the health risks associated with dermal exposures during chemical incidents. This article reviews available resources and presents a conceptual framework for a decision support system (DSS) that assists in characterizing and managing risk during chemical emergencies involving dermal exposures. The framework merges principles of three decision-making techniques: 1) scenario planning, 2) risk analysis, and 3) multicriteria decision analysis (MCDA). This DSS facilitates dynamic decision making during each of the distinct life cycle phases of an emergency incident (ie, preparedness, response, or recovery) and identifies EMO needs. A checklist tool provides key questions intended to guide users through the complexities of conducting a dermal risk assessment. The questions define the scope of the framework for resource identification and application to support decision-making needs. The framework consists of three primary modules: 1) resource compilation, 2) prioritization, and 3) decision. The modules systematically identify, organize, and rank relevant information resources relating to the hazards of dermal exposures to chemicals and risk management strategies. Each module is subdivided into critical elements designed to further delineate the resources based on relevant incident phase and type of information. The DSS framework provides a much needed structure based on contemporary decision analysis principles for 1) documenting key questions for EMO problem formulation and 2) a method for systematically organizing, screening, and prioritizing information resources on dermal hazards, exposures, risk characterization, and management.


2006 ◽  
Author(s):  
Leigh A. Baumgart ◽  
Ellen J. Bass ◽  
Brenda Philips ◽  
Kevin Kloesel

Sign in / Sign up

Export Citation Format

Share Document