scholarly journals Meteorological effects in the lower ionosphere as based on VLF/LF signal observations

2014 ◽  
Vol 14 (10) ◽  
pp. 2671-2679 ◽  
Author(s):  
A. Rozhnoi ◽  
M. Solovieva ◽  
B. Levin ◽  
M. Hayakawa ◽  
V. Fedun

Abstract. Very low and low frequency (VLF/LF) data recorded in the Far Eastern stations Petropavlovsk-Kamchatsky (158.92° E, 53.15° N), Yuzhno-Sakhalinsk (142.75° E, 46.95° N) and Yuzhno-Kurilsk (145.861° E, 44.03° N) are investigated to study the meteorological effects in the lower ionosphere. The results demonstrate the sensitivity of the VLF/LF signals to the variations of atmospheric pressure, humidity, wind velocity and temperature, and the VLF/LF record at the station of Yuzhno-Kurilsk is found to be most sensitive to those variations of atmospheric parameters. The region under consideration is characterized by high winter cyclonic activity in mid-latitudes and strong summer and autumn typhoon activity in low latitudes. VLF/LF signal variations during eight tropical cyclones (TCs) with different intensity are considered. Negative nighttime anomalies in the signal amplitude that are most probably caused by TC activity are found for six events. Those anomalies are observed during 1–2 days when TCs move inside the sensitivity zones of the subionospheric paths. Perturbations of the VLF signal observed during two TCs can be caused by both the TC influence and seismic activity, but no correlation between TC intensity and magnitude of the signal anomalies is found. Spectral analysis of the typhoon-induced disturbed signals revealed the fluctuations with time periods in the range of 7–16 and 15–55 min that corresponds to the range of internal gravity waves periods.

2014 ◽  
Vol 2 (4) ◽  
pp. 2789-2812 ◽  
Author(s):  
A. Rozhnoi ◽  
M. Solovieva ◽  
B. Levin ◽  
M. Hayakawa ◽  
V. Fedun

Abstract. Very low and low frequency (VLF/LF) data recorded in the Far Eastern stations Petropavlovsk-Kamchatsky (158.92° E, 53.15° N), Yuzhno-Sakhalinsk (142.75° E, 46.95° N) and Yuzhno-Kurilsk (145.861° E, 44.03° N) are investigated to study the meteorological effects in the lower ionosphere. The results demonstrate the sensitivity of the VLF/LF signals to the variations of atmospheric pressure, humidity, wind velocity and temperature, and the VLF/LF record at the station of Yuzhno-Kurilsk is found to be most sensitive to those variations of atmospheric parameters. The region under consideration is characterized by high winter cyclonic activity in midlatitudes and strong summer and autumn typhoon activity in low latitudes. VLF/LF signal variations during 8 tropical cyclones (TCs) with different intensity are considered. Negative nighttime anomalies in the signal amplitude that are most probably caused by TC activity are found for 6 events. Those anomalies are observed during 1–2 days when TCs move inside the sensitivity zones of the subionospheric paths. Perturbations of the VLF signal observed during 2 TCs can be caused by both the TC influence and seismic activity, but no correlation between TC intensity and magnitude of the signal anomalies is found. Spectral analysis of the typhoon-induced disturbed signals revealed the fluctuations with time periods in the range of 7–16 and 15–55 min that corresponds to the range of internal gravity waves periods.


2004 ◽  
Vol 4 (5/6) ◽  
pp. 647-653 ◽  
Author(s):  
A. V. Shvets ◽  
M. Hayakawa ◽  
S. Maekawa

Abstract. Results of simultaneous LF subionospheric monitoring over two different propagation paths prior to the very strong Tokachi earthquake (near the east coast of Hokkaido Island, 25 September 2003) of magnitude 8.3 are presented firstly. Nighttime amplitude fluctuations of the Japanese Time Standard Transmitter (JG2AS, 40kHz) signal received at Moshiri (Japan, 142°E, 44°N) and at Petropavlovsk-Kamchatski (Russia, 158°E, 53°N) were analyzed. As a possible precursory signature we observed synchronous intensification of quasi periodical 16-day variations of the dispersion in the signals received at both observation stations before the earthquake. The strongest deviations observed as a rule were depletions of signal amplitude probably connected with increase of loss in the ionosphere by the enhancement of turbulence. This is due to dissipation of internal gravity waves (IGW) at the lower ionosphere heights. A scheme for seismo-IGW-planetary waves (PW) interconnection has been justified to explain the observed connection with strong earthquakes. It considers the seasonal variability in the signal.


1999 ◽  
Vol 390 ◽  
pp. 93-126 ◽  
Author(s):  
BRUCE R. SUTHERLAND ◽  
STUART B. DALZIEL ◽  
GRAHAM O. HUGHES ◽  
P. F. LINDEN

We present measurements of the density and velocity fields produced when an oscillating circular cylinder excites internal gravity waves in a stratified fluid. These measurements are obtained using a novel, non-intrusive optical technique suitable for determining the density fluctuation field in temporally evolving flows which are nominally two-dimensional. Although using the same basic principles as conventional methods, the technique uses digital image processing in lieu of large and expensive parabolic mirrors, thus allowing more flexibility and providing high sensitivity: perturbations of the order of 1% of the ambient density gradient may be detected. From the density gradient field and its time derivative it is possible to construct the perturbation fields of density and horizontal and vertical velocity. Thus, in principle, momentum and energy fluxes can be determined.In this paper we examine the structure and amplitude of internal gravity waves generated by a cylinder oscillating vertically at different frequencies and amplitudes, paying particular attention to the role of viscosity in determining the evolution of the waves. In qualitative agreement with theory, it is found that wave motions characterized by a bimodal displacement distribution close to the source are attenuated by viscosity and eventually undergo a transition to a unimodal displacement distribution further from the source. Close quantitative agreement is found when comparing our results with the theoretical ones of Hurley & Keady (1997). This demonstrates that the new experimental technique is capable of making accurate measurements and also lends support to analytic theories. However, theory predicts that the wave beams are narrower than observed, and the amplitude is significantly under-predicted for low-frequency waves. The discrepancy occurs in part because the theory neglects the presence of the viscous boundary layers surrounding the cylinder, and because it does not take into account the effects of wave attenuation resulting from nonlinear wave–wave interactions between the upward and downward propagating waves near the source.


2021 ◽  
Vol 48 (4) ◽  
Author(s):  
Umesh P. Singh ◽  

There is always a risk of destruction of man-made satellites by the energetic electrons trapped in Van Allen radiation belts in space. These energetic electrons also pose a biological danger to astronauts. The cyclotron resonance interaction is studied between the whistler-mode waves in the frequency range of ELF (Extremely Low Frequency 300 – 3000 HZ) and VLF (Very Low Frequency 3 – 30 kHz) propagating along geomagnetic field line and counter streaming energetic electron. During this process the pitch angle of energetic electrons reduces. This results in the dumping of these electrons into the lower ionosphere. This makes electrons unable to strike the satellites orbiting in low Earth orbit, Geosynchronous, Sun-synchronous or polar orbit. It is shown that the lifetime values of energetic electrons vary from 2.03 to 227.68 hours at low latitudes. It is shown that these waves can remove these energetic electrons from their path and ensure the safety of satellites.


2019 ◽  
Vol 621 ◽  
pp. A135 ◽  
Author(s):  
D. M. Bowman ◽  
C. Aerts ◽  
C. Johnston ◽  
M. G. Pedersen ◽  
T. M. Rogers ◽  
...  

Context. Main sequence stars with a convective core are predicted to stochastically excite internal gravity waves (IGWs), which effectively transport angular momentum throughout the stellar interior and explain the observed near-uniform interior rotation rates of intermediate-mass stars. However, there are few detections of IGWs, and fewer still made using photometry, with more detections needed to constrain numerical simulations. Aims. We aim to formalise the detection and characterisation of IGWs in photometric observations of stars born with convective cores (M ≳ 1.5 M⊙) and parameterise the low-frequency power excess caused by IGWs. Methods. Using the most recent CoRoT light curves for a sample of O, B, A and F stars, we parameterised the morphology of the flux contribution of IGWs in Fourier space using an MCMC numerical scheme within a Bayesian framework. We compared this to predictions from IGW numerical simulations and investigated how the observed morphology changes as a function of stellar parameters. Results. We demonstrate that a common morphology for the low-frequency power excess is observed in early-type stars observed by CoRoT. Our study shows that a background frequency-dependent source of astrophysical signal is common, which we interpret as IGWs. We provide constraints on the amplitudes of IGWs and the shape of their detected frequency spectrum across a range of mass, which is the first ensemble study of stochastic variability in such a diverse sample of stars. Conclusions. The evidence of a low-frequency power excess across a wide mass range supports the interpretation of IGWs in photometry of O, B, A and F stars. We also discuss the prospects of observing hundreds of massive stars with the Transiting Exoplanet Survey Satellite (TESS) in the near future.


Sign in / Sign up

Export Citation Format

Share Document