scholarly journals Geomorphological evolution of landslides near an active normal fault in Northern Taiwan, as revealed by LiDAR and unmanned aircraft system data

2017 ◽  
Author(s):  
Kuo-Jen Chang ◽  
Yu-Chang Chan ◽  
Rou-Fei Chen ◽  
Yu-Chung Hsieh

Abstract. Several remote sensing techniques, namely traditional aerial photographs, an unmanned aircraft system (UAS), and airborne LiDAR, were used in this study to decipher the morphological features of obscure landslides in volcanic regions. A morphological reconstruction method was proposed to assess landslide morphology based on the dome-shaped topography of the volcanic edifice and the nature of its morphological evolution. Two large-scale landslides in the Tatun volcano group in Northern Taiwan were targeted to more accurately characterize the landslide morphology through airborne LiDAR and UAS-derived digital terrain models and images. With the proposed reconstruction method, the depleted volume of the two landslides was estimated to be at least 820 ± 20 × 106 m3, approximately six times higher than the reported largest landslide volume in Taiwan. Normal faulting in the region likely played a role in triggering the two landslides, because there are extensive geological and historical records of an active normal fault in this region. The subsequent geomorphological evolution of the two landslides is inferred to account for the observed morphological and tectonic features, as characterized using the remote sensing techniques.

2018 ◽  
Vol 18 (3) ◽  
pp. 709-727 ◽  
Author(s):  
Kuo-Jen Chang ◽  
Yu-Chang Chan ◽  
Rou-Fei Chen ◽  
Yu-Chung Hsieh

Abstract. Several remote sensing techniques, namely traditional aerial photographs, an unmanned aircraft system (UAS), and airborne lidar, were used in this study to decipher the morphological features of obscure landslides in volcanic regions and how the observed features may be used for understanding landslide occurrence and potential hazard. A morphological reconstruction method was proposed to assess landslide morphology based on the dome-shaped topography of the volcanic edifice and the nature of its morphological evolution. Two large-scale landslides in the Tatun volcano group in northern Taiwan were targeted to more accurately characterize the landslide morphology through airborne lidar and UAS-derived digital terrain models and images. With the proposed reconstruction method, the depleted volume of the two landslides was estimated to be at least 820 ± 20  ×  106 m3. Normal faulting in the region likely played a role in triggering the two landslides, because there are extensive geological and historical records of an active normal fault in this region. The subsequent geomorphological evolution of the two landslides is thus inferred to account for the observed morphological and tectonic features that are indicative of resulting in large and life-threatening landslides, as characterized using the recent remote sensing techniques.


2019 ◽  
Vol 7 (1) ◽  
pp. 21-38 ◽  
Author(s):  
Connor McAnuff ◽  
Claire Samson ◽  
Dave Melanson ◽  
Christopher Polowick ◽  
Erin Bethell

Structural mapping of rock walls to determine fracture orientation provides critical geological information in support of mining operations. A helicopter-style UAS (rotor diameter 2 m; take-off mass 35 kg; payload mass 11 kg) instrumented with a high-resolution LiDAR imaged a 75 m long and 10–15 m high series of four adjacent rock walls at the Canadian Wollastonite mine. A point cloud with a density of 484 point/m2 acquired at an angle of incidence of ∼41.7° from a flight altitude of 41.7 m above ground level was selected for structural mapping. The point cloud was first meshed using the Poisson surface reconstruction method and then remeshed to achieve an even element size distribution. Visualization of the remeshed Poisson mesh using a 360° hue–saturation–lightness colour wheel highlighted areas of higher fracture density, whereas visualization using a 180° colour wheel accentuated sliver-like geological features. Two joint sets were identified at 156/82 and 241/86 (strike/dip in degrees). A total of 18 virtual strike measurements and 13 virtual dip measurements were within 10% of manual compass measurements. This study demonstrated that the task of structural mapping of large rock walls can be automated by processing 3D images acquired with a LiDAR mounted on a UAS.


2019 ◽  
Vol 11 (15) ◽  
pp. 1835 ◽  
Author(s):  
Mohammad Sadegh Askari ◽  
Timothy McCarthy ◽  
Aidan Magee ◽  
Darren J. Murphy

Hyperspectral and multispectral imagery have been demonstrated to have a considerable potential for near real-time monitoring and mapping of grass quality indicators. The objective of this study was to evaluate the efficiency of remote sensing techniques for quantification of aboveground grass biomass (BM) and crude protein (CP) in a temperate European climate such as Ireland. The experiment was conducted on 64 plots and 53 paddocks with varying quantities of nitrogen applied. Hyperspectral imagery (HSI) and multispectral imagery (MSI) were analyzed to develop the prediction models. The MSI data used in this study were captured using an unmanned aircraft vehicle (UAV) and the satellite Sentinel-2, while the HSI data were obtained using a handheld hyperspectral camera. The prediction models were developed using partial least squares regression (PLSR) and stepwise multi-linear regression (MLR). Eventually, the spatial distribution of grass biomass over plots and paddocks was mapped to assess the within-field variability of grass quality metrics. An excellent accuracy was achieved for the prediction of BM and CP using HSI (RPD > 2.5 and R2 > 0.8), and a good accuracy was obtained via MSI-UAV (2 < RPD < 2.5 and R2 > 0.7) for the grass quality indicators. The accuracy of the models calculated using MSI-Sentinel-2 was reasonable for BM prediction and insufficient for CP estimation. The red-edge range of the wavelengths showed the maximum impact on the predictability of grass BM, and the NIR range had the greatest influence on the estimation of grass CP. Both the PLSR and MLR techniques were found to be sufficiently robust for spectral modelling of aboveground BM and CP. The PLSR yielded a slightly better model than MLR. This study suggested that remote sensing techniques can be used as a rapid and reliable approach for near real-time quantitative assessment of fresh grass quality under a temperate European climate.


2021 ◽  
Author(s):  
Glenn Suir ◽  
Christina Saltus ◽  
Charles Sasser ◽  
J. Harris ◽  
Molly Reif ◽  
...  

Satellite remote sensing of wetlands provides many advantages to traditional monitoring and mapping methods. However, remote sensing often remains reliant on labor- and resource- intensive ground truth data for wetland vegetation identification through image classification training and accuracy assessments. Therefore, this study sought to evaluate the use of unmanned aircraft system (UAS) data as an alternative or supplement to traditional ground truthing techniques in support of remote sensing for identifying and mapping wetland vegetation.


Drones ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 17 ◽  
Author(s):  
Burchan Aydin ◽  
Emre Selvi ◽  
Jian Tao ◽  
Michael J. Starek

This paper examines the potential use of fire extinguishing balls as part of a proposed system, where drone and remote-sensing technologies are utilized cooperatively as a supplement to traditional firefighting methods. The proposed system consists of (1) scouting unmanned aircraft system (UAS) to detect spot fires and monitor the risk of wildfire approaching a building, fence, and/or firefighting crew via remote sensing, (2) communication UAS to establish and extend the communication channel between scouting UAS and fire-fighting UAS, and (3) a fire-fighting UAS autonomously traveling to the waypoints to drop fire extinguishing balls (environmental friendly, heat activated suppressants). This concept is under development through a transdisciplinary multi-institutional project. The scope of this paper encloses general illustration of this design, and the experiments conducted so far to evaluate fire extinguishing balls. The results of the experiments show that smaller size fire extinguishing balls available in the global marketplace attached to drones might not be effective in aiding in building fires (unless there are open windows in the buildings already). On the contrary, results show that even the smaller size fire extinguishing balls might be effective in extinguishing short grass fires (around 0.5 kg size ball extinguished a circle of 1-meter of short grass). This finding guided the authors towards wildfire fighting rather than building fires. The paper also demonstrates building of heavy payload drones (around 15 kg payload), and the progress of development of an apparatus carrying fire-extinguishing balls attachable to drones.


Author(s):  
A. Roncat ◽  
C. Briese ◽  
N. Pfeifer

In order to retrieve results comparable under different flight parameters and among different flight campaigns, passive remote sensing data such as hyperspectral imagery need to undergo a radiometric calibration. While this calibration, aiming at the derivation of physically meaningful surface attributes such as a reflectance value, is quite cumbersome for passively sensed data and relies on a number of external parameters, the situation is by far less complicated for active remote sensing techniques such as lidar. This fact motivates the investigation of the suitability of full-waveform lidar as a “single-wavelength reflectometer” to support radiometric calibration of hyperspectral imagery. In this paper, this suitability was investigated by means of an airborne hyperspectral imagery campaign and an airborne lidar campaign recorded over the same area. Criteria are given to assess diffuse reflectance behaviour; the distribution of reflectance derived by the two techniques were found comparable in four test areas where these criteria were met. This is a promising result especially in the context of current developments of multi-spectral lidar systems.


2014 ◽  
Vol 51 (3) ◽  
pp. 870-882 ◽  
Author(s):  
Pablo Royo ◽  
Marc Perez-Batlle ◽  
Raul Cuadrado ◽  
Enric Pastor

Sign in / Sign up

Export Citation Format

Share Document