scholarly journals Integrating faults and past earthquakes into a probabilistic seismic hazard model for peninsular Italy

Author(s):  
Alessandro Valentini ◽  
Francesco Visini ◽  
Bruno Pace

Abstract. Italy is one of the most seismically active countries in Europe. Moderate to strong earthquakes, with magnitudes of up to ~ 7, have been recorded on many of active faults in historical times. Currently, probabilistic seismic hazard assessments in Italy are mainly based on area source models, in which the seismicity is modelled on a number of seismotectonic zones and the occurrence of earthquakes is assumed to be uniform. However, in the last decade, efforts have increasingly been directed towards using fault sources in seismic hazard models to obtain more detailed and possibly more realistic patterns of ground motion. In our model, we used two categories of earthquake sources. The first involves active faults, and fault slip rates were used to quantify the seismic activity rate. We produced an inventory of all fault sources, with details on their geometric, kinematic and energetic properties. The parameters are used to compute the total seismic moment rate for each fault. We evaluated the magnitude-frequency distributions of each fault source using two models, a characteristic Gaussian model centred on the maximum magnitude and a Truncated Gutenberg-Richter model. The second earthquake source category involves distributed seismicity, and a fixed-radius smoothed approach and a historical catalogue were used to evaluate seismic activity. Under the assumption that deformation is concentrated along faults, we combined the earthquakes derived from the geometry and slip rates of active faults with the earthquakes from the spatially smoothed earthquake sources and assumed that the smoothed seismic activity in the vicinity of an active fault gradually decreases by a fault-size driven factor. We computed horizontal peak ground acceleration maps for return periods of 475 and 2,475 yr. Although the range and gross spatial distribution of the expected accelerations obtained here are comparable to those obtained through methods involving seismic catalogues and classical zonation models, the spatial pattern of our model is far more detailed. Our model is characterized by areas that are more hazardous and that correspond to mapped active faults, while the previous models yield expected accelerations that are almost uniformly distributed across large regions. In addition, we conducted sensitivity tests to determine the impact on the hazard results of the earthquake rates derived from two magnitude-frequency distribution models for faults and to determine the relative contributions of faults versus distributed seismic activity. We think our model represents an advance for Italy in terms of input data (quantity and quality) and methodology in the field of the fault-based regional seismic hazard modelling.

2017 ◽  
Vol 17 (11) ◽  
pp. 2017-2039 ◽  
Author(s):  
Alessandro Valentini ◽  
Francesco Visini ◽  
Bruno Pace

Abstract. Italy is one of the most seismically active countries in Europe. Moderate to strong earthquakes, with magnitudes of up to ∼ 7, have been historically recorded for many active faults. Currently, probabilistic seismic hazard assessments in Italy are mainly based on area source models, in which seismicity is modelled using a number of seismotectonic zones and the occurrence of earthquakes is assumed uniform. However, in the past decade, efforts have increasingly been directed towards using fault sources in seismic hazard models to obtain more detailed and potentially more realistic patterns of ground motion. In our model, we used two categories of earthquake sources. The first involves active faults, and using geological slip rates to quantify the seismic activity rate. We produced an inventory of all fault sources with details of their geometric, kinematic, and energetic properties. The associated parameters were used to compute the total seismic moment rate of each fault. We evaluated the magnitude–frequency distribution (MFD) of each fault source using two models: a characteristic Gaussian model centred at the maximum magnitude and a truncated Gutenberg–Richter model. The second earthquake source category involves grid-point seismicity, with a fixed-radius smoothed approach and a historical catalogue were used to evaluate seismic activity. Under the assumption that deformation is concentrated along faults, we combined the MFD derived from the geometry and slip rates of active faults with the MFD from the spatially smoothed earthquake sources and assumed that the smoothed seismic activity in the vicinity of an active fault gradually decreases by a fault-size-driven factor. Additionally, we computed horizontal peak ground acceleration (PGA) maps for return periods of 475 and 2475 years. Although the ranges and gross spatial distributions of the expected accelerations obtained here are comparable to those obtained through methods involving seismic catalogues and classical zonation models, the spatial pattern of the hazard maps obtained with our model is far more detailed. Our model is characterized by areas that are more hazardous and that correspond to mapped active faults, while previous models yield expected accelerations that are almost uniformly distributed across large regions. In addition, we conducted sensitivity tests to determine the impact on the hazard results of the earthquake rates derived from two MFD models for faults and to determine the relative contributions of faults versus distributed seismic activity. We believe that our model represents advancements in terms of the input data (quantity and quality) and methodology used in the field of fault-based regional seismic hazard modelling in Italy.


2020 ◽  
Vol 5 (3) ◽  
pp. 15-25
Author(s):  
Mhd Azri Pangaribuan ◽  
Syamsurijal Rasimeng ◽  
Karyanto Karyanto ◽  
Rudianto Rudianto

Analysis of seismic hazard estimation is one method for estimating the effect of earthquakes. The purpose of this study was to determine the maximum value of ground acceleration in bedrock or PGA values for the Lampung Province region. This analysis of seismic hazard estimation is carried out by a probabilistic seismic hazard analysis (PSHA) method. In the process of estimating the influence of earthquakes, the PSHA method principally uses 3 types of earthquake sources, namely the source of background earthquakes, subduction earthquakes (earthquake subduction) and fault earthquakes (faut). The calculation of the estimated seismic hazard value is carried out using the 2007 USGS PSHA program. The distribution of seismic hazard values for the Lampung Province region on bedrock with a 500-year return period or a 10% probability on the PGA condition (T = 0) is 0.1 g to 1, 3 g and a 2500 year return period or a probability of 2% in the PGA condition (T = 0) is 0.1 g to 1.3 g.


Author(s):  
В.Г. Григорян ◽  
Дж.К. Карапетян ◽  
К.С. Казарян ◽  
Р.С. Саргсян

В статье рассматриваются вопросы, связанные с общим сейсмическим районированием (ОСР) территории Армении, а также хронология создания карт ОСР. Показана некоторая противоречивость составленных в разные периоды нормативных карт. Разработаны и внедрены национальные нормы по сейсмостойкому строительству – СНРА II-2.02.94, в которых, помимо традиционных баллов, опасность выражалась через ожидаемые максимальные значения ускорений грунтов Аmax. На основе существующих в настоящее время новых методов и технологий по оценке и картированию сейсмической опасности (сейсмического районирования) предлагается вариант вероятностной карты общего сейсмического районирования территории Армении в масштабе 1:500 000. Карта составлена на базе моделей возможных очаговых зон с оценками сейсмических потенциалов (Mmax) основных структурных элементов и сейсмического эффекта. Предложенный вариант карты СМР территории Армении существенно отличается от действующей нормативной карты. На ней впервые выделена зона с ожидаемыми максимальными значениями ускорения грунта – 0,5 g. Задача дальнейших исследований состоит в рассмотрении более сложных моделей пространственно-временного распределения очагов сильных землетрясений, более объективных и приемлемых с инженерной точки зрения количественных характеристик, определяющих характер и уровень ожидаемых воздействий и методов их картирования. Так, в рамках общей научной программы по оценке сейсмической опасности и сейсмического риска, усовершенствования методов количественной оценки параметров сейсмических воздействий в ИГИС НАН РА ведутся исследования по рассмотрению задач с использованием, кроме традиционных (смещение, скорость, ускорение), также интегральных параметров колебаний, наиболее полно характеризующих энергию воздействия In the article we made a chronological and detailed comparative analysis of general seismic zoning (GSZ) maps compiled in different periods for the territory of Armenia. Based on the developed and improved methods for assessing the parameters of seismic influences and using modern methods and technologies for assessment and mapping of seismic hazard (zoning), a probabilistic map of seismic zoning for the territory of Armenia at a scale of 1: 500,000 was compiled. The map is based on the models of possible seismic sources with estimates of seismic potentials (Mmax) of the basic structural elements (compiled by the staff of the IGES NAS RA) and the seismic effect. The proposed version of the GSZ map of the territory of Armenia differs significantly from the current normative map. A zone with the expected maximum values of ground acceleration – 0.5g is allocated on it for the first time. The task of further research is to consider more complex models of the space-time distribution of strong earthquake sources, more objective and acceptable (from an engineering point of view) quantitative characteristics that determine the nature and level of expected impacts and methods of their mapping. Thus, within the framework of the general scientific program for the assessment of seismic hazard and seismic risk, the improvement of methods for quantifying the parameters of seismic effects in the IGES NAS RA, research is being conducted to consider problems using, besides traditional (displacement, speed, acceleration), also integral parameters of vibrations, the most fully characterizing the impact energy.


Author(s):  
Mark Stirling ◽  
Jarg Pettinga ◽  
Kelvin Berryman ◽  
Mark Yetton

We present the main results of a probabilistic seismic hazard assessment of the Canterbury region recently completed for Environment Canterbury (formerly Canterbury Regional Council). We use the distribution of active faults and the historical record of earthquakes to estimate the levels of earthquake shaking (peak ground acceleration and response spectral accelerations) that can be expected across the Canterbury region with return periods of 150, 475 and 1000 years. The strongest shaking (e.g. 475 year peak ground accelerations of 0.7g or more) can be expected in the west and north to northwest of the Canterbury region, where the greatest concentrations of known active faults and historical seismicity are located. Site-specific analyses of eight towns and cities selected by Environment Canterbury show that Arthur's Pass and Kaikoura are located within these zones of high hazard. In contrast, the centres studied in the Canterbury Plains (Rangiora, Kaiapoi, Christchurch, Ashburton, Temuka and Timaru) are generally located away from the zones of highest hazard. The study represents the first application of recently-developed methods in probabilistic seismic hazard at a regional scale in New Zealand.


2021 ◽  
Author(s):  
Abeer Al-Ashkar ◽  
Antoine Schlupp ◽  
Matthieu Ferry ◽  
Ulziibat Munkhuu

Abstract. We present new constraints from tectonic geomorphology and paleoseismology along the newly discovered Sharkhai fault near the capital city of Mongolia. Detailed observations from high resolution Pleiades satellite images and field investigations allowed us to map the fault in detail, describe its geometry and segmentation, characterize its kinematics, and document its recent activity and seismic behavior (cumulative displacements and paleoseismicity). The Sharkhai fault displays a surface length of ~40 km with a slightly arcuate geometry, and a strike ranging from N42° E to N72° E. It affects numerous drainages that show left-lateral cumulative displacements reaching 57 m. Paleoseismic investigations document the faulting and deposition record for the last ~3000 yr and reveal that the penultimate earthquake (PE) occurred between 1515 ± 90 BC and 945 ± 110 BC and the most recent event (MRE) occurred after 860 ± 85 AD. The resulting time interval of 2080 ± 470 years is the first constraint on the Sharkhai fault for large earthquakes. On the basis of our mapping of the surface rupture and the resulting segmentation analysis, we propose two possible scenarios for large earthquakes with likely magnitudes between 6.4 ± 0.2 and 7.1 ± 0.2. Furthermore, we apply scaling laws to infer coseismic slip values and derive preliminary estimates of long-term slip rates between 0.2 ± 0.2 and 1.0 ± 0.5 mm/y. Finally, we propose that these original observations and results from a newly discovered fault should be taken into account for the seismic hazard assessment for the city of Ulaanbaatar and help build a comprehensive model of active faults in that region.


Author(s):  
Endra Gunawan

Abstract To estimate the hazard posed by active faults, estimates of the maximum magnitude earthquake that could occur on the fault are needed. I compare previously published scaling relationships between earthquake magnitude and rupture length with data from recent earthquakes in Indonesia. I compile a total amount of 13 literatures on investigating coseismic deformation in Indonesia, which then divided into strike-slip and dip-slip earthquake cases. I demonstrate that a different scaling relationship generates different misfit compared to data. For a practical practice of making seismic hazard model in Indonesia, this research shows the suggested reference for a scaling relationship of strike-slip and dip-slip faulting regime. On a practical approach in constructing a logic tree for seismic hazard model, using different weighting between each published earthquake scaling relationship is recommended.


Geosciences ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 489 ◽  
Author(s):  
Şeşetyan ◽  
Tümsa ◽  
Akinci

The increase in the wealth of information on the seismotectonic structure of the Marmara region after two devastating earthquakes (M7.6 Izmit and M7.2 Duzce events) in the year 1999 opened the way for the reassessment of the probabilistic seismic hazard in the light of new datasets. In this connection, the most recent findings and outputs of different national and international projects concerning seismicity and fault characterization in terms of geometric and kinematic properties are exploited in the present study to build an updated seismic hazard model. A revised fault segmentation model, alternative earthquake rupture models under a Poisson and renewal assumptions, as well as recently derived global and regional ground motion prediction equations (GMPEs) are put together in the present model to assess the seismic hazard in the region. Probabilistic seismic hazard assessment (PSHA) is conducted based on characteristic earthquake modelling for the fault segments capable of producing large earthquakes and smoothed seismicity modelling for the background smaller magnitude earthquake activity. The time-independent and time-dependent seismic hazard results in terms of spatial distributions of three ground-shaking intensity measures (peak ground acceleration, PGA, and 0.2 s and 1.0 s spectral accelerations (SA) on rock having 10% and 2% probabilities of exceedance in 50 years) as well as the corresponding hazard curves for selected cities are shown and compared with previous studies.


Author(s):  
K L Johnson ◽  
M Pagani ◽  
R H Styron

Summary The southern Pacific Islands region is highly seismically active, and includes earthquakes from four major subduction systems, seafloor fracture zones and transform faults, and other sources of crustal seismicity. Since 1900, the area has experienced >350 earthquakes of M > 7.0, including 11 of M ≥ 8.0. Given the elevated threat of earthquakes, several probabilistic seismic hazard analyses have been published for this region or encompassed subregions; however, those that are publicly accessible do not provide complete coverage of the region using homogeneous methodologies. Here, we present a probabilistic seismic hazard model for the southern Pacific Islands that comprehensively covers the Solomon Islands in the northwest to the Tonga islands in the southeast. The seismic source model accounts for active shallow crustal seismicity with seafloor faults and gridded smoothed seismicity, subduction interfaces using faults with geometries defined based on geophysical datasets and models, and intraslab seismicity modelled by a set of ruptures that occupy the slab volume. Each source type is assigned occurrence rates based on sub-catalogues classified to each respective tectonic context. Subduction interface and crustal fault occurrence rates also incorporate a tectonic component based on their respective characteristic earthquakes. We demonstrate the use of non-standard magnitude-frequency distributions to reproduce the observed occurrence rates. For subduction interface sources, we use various versions of the source model to account for epistemic uncertainty in factors impacting the maximum magnitude earthquake permissible by each source, varying the interface lower depth and segmentation as well as the magnitude scaling relationship used to compute the maximum magnitude earthquake and subsequently its occurrence rate. The ground motion characterisation uses a logic tree that weights three ground motion prediction equations for each tectonic region. We compute hazard maps for 10% and 2% probability of exceedance in 50 years on rock sites, discussing the regional distribution of peak ground acceleration and spectral acceleration with a period of 1.0 s, honing in on the hazard curves and uniform hazard spectra of several capital or populous cities and drawing comparisons to other recent hazard models. The results reveal that the most hazardous landmasses are the island chains closest to subduction trenches, as well as localised areas with high rates of seismicity occurring in active shallow crust. We use seismic hazard disaggregation to demonstrate that at selected cities located above subduction zones, the PGA with 10% probability of exceedance in 50 years is controlled by Mw > 7.0 subduction interface and intraslab earthquakes, while at cities far from subduction zones, Mw < 6.5 crustal earthquakes contribute most. The model is used for southern Pacific Islands coverage in the Global Earthquake Model Global Hazard Mosaic.


Sign in / Sign up

Export Citation Format

Share Document