scholarly journals Pseudo-prospective testing of 5-year earthquake forecasts for California using inlabru

2022 ◽  
Author(s):  
Kirsty Bayliss ◽  
Mark Naylor ◽  
Farnaz Kamranzad ◽  
Ian Main

Abstract. Probabilistic earthquake forecasts estimate the likelihood of future earthquakes within a specified time-space-magnitude window and are important because they inform planning of hazard mitigation activities on different timescales. The spatial component of such forecasts, expressed as seismicity models, generally rely upon some combination of past event locations and underlying factors which might affect spatial intensity, such as strain rate, fault location and slip rate or past seismicity. For the first time, we extend previously reported spatial seismicity models, generated using the open source inlabru package, to time-independent earthquake forecasts using California as a case study. The inlabru approach allows the rapid evaluation of point process models which integrate different spatial datasets. We explore how well various candidate forecasts perform compared to observed activity over three contiguous five year time periods using the same training window for the seismicity data. In each case we compare models constructed from both full and declustered earthquake catalogues. In doing this, we compare the use of synthetic catalogue forecasts to the more widely-used grid-based approach of previous forecast testing experiments. The simulated-catalogue approach uses the full model posteriors to create Bayesian earthquake forecasts. We show that simulated-catalogue based forecasts perform better than the grid-based equivalents due to (a) their ability to capture more uncertainty in the model components and (b) the associated relaxation of the Poisson assumption in testing. We demonstrate that the inlabru models perform well overall over various time periods, and hence that independent data such as fault slip rates can improve forecasting power on the time scales examined. Together, these findings represent a significant improvement in earthquake forecasting is possible, though this has yet to be tested and proven in true prospective mode.

2021 ◽  
Vol 11 (22) ◽  
pp. 10899
Author(s):  
Matteo Taroni ◽  
Aybige Akinci

Seismicity-based earthquake forecasting models have been primarily studied and developed over the past twenty years. These models mainly rely on seismicity catalogs as their data source and provide forecasts in time, space, and magnitude in a quantifiable manner. In this study, we presented a technique to better determine future earthquakes in space based on spatially smoothed seismicity. The improvement’s main objective is to use foreshock and aftershock events together with their mainshocks. Time-independent earthquake forecast models are often developed using declustered catalogs, where smaller-magnitude events regarding their mainshocks are removed from the catalog. Declustered catalogs are required in the probabilistic seismic hazard analysis (PSHA) to hold the Poisson assumption that the events are independent in time and space. However, as highlighted and presented by many recent studies, removing such events from seismic catalogs may lead to underestimating seismicity rates and, consequently, the final seismic hazard in terms of ground shaking. Our study also demonstrated that considering the complete catalog may improve future earthquakes’ spatial forecast. To do so, we adopted two different smoothed seismicity methods: (1) the fixed smoothing method, which uses spatially uniform smoothing parameters, and (2) the adaptive smoothing method, which relates an individual smoothing distance for each earthquake. The smoothed seismicity models are constructed by using the global earthquake catalog with Mw ≥ 5.5 events. We reported progress on comparing smoothed seismicity models developed by calculating and evaluating the joint log-likelihoods. Our resulting forecast shows a significant information gain concerning both fixed and adaptive smoothing model forecasts. Our findings indicate that complete catalogs are a notable feature for increasing the spatial variation skill of seismicity forecasts.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 538
Author(s):  
Malal Kane ◽  
Ebrahim Riahi ◽  
Minh-Tan Do

This paper deals with the modeling of rolling resistance and the analysis of the effect of pavement texture. The Rolling Resistance Model (RRM) is a simplification of the no-slip rate of the Dynamic Friction Model (DFM) based on modeling tire/road contact and is intended to predict the tire/pavement friction at all slip rates. The experimental validation of this approach was performed using a machine simulating tires rolling on road surfaces. The tested pavement surfaces have a wide range of textures from smooth to macro-micro-rough, thus covering all the surfaces likely to be encountered on the roads. A comparison between the experimental rolling resistances and those predicted by the model shows a good correlation, with an R2 exceeding 0.8. A good correlation between the MPD (mean profile depth) of the surfaces and the rolling resistance is also shown. It is also noticed that a random distribution and pointed shape of the summits may also be an inconvenience concerning rolling resistance, thus leading to the conclusion that beyond the macrotexture, the positivity of the texture should also be taken into account. A possible simplification of the model by neglecting the damping part in the constitutive model of the rubber is also noted.


2021 ◽  
Vol 7 (13) ◽  
pp. eaaz5691
Author(s):  
Kimberly Blisniuk ◽  
Katherine Scharer ◽  
Warren D. Sharp ◽  
Roland Burgmann ◽  
Colin Amos ◽  
...  

The San Andreas fault has the highest calculated time-dependent probability for large-magnitude earthquakes in southern California. However, where the fault is multistranded east of the Los Angeles metropolitan area, it has been uncertain which strand has the fastest slip rate and, therefore, which has the highest probability of a destructive earthquake. Reconstruction of offset Pleistocene-Holocene landforms dated using the uranium-thorium soil carbonate and beryllium-10 surface exposure techniques indicates slip rates of 24.1 ± 3 millimeter per year for the San Andreas fault, with 21.6 ± 2 and 2.5 ± 1 millimeters per year for the Mission Creek and Banning strands, respectively. These data establish the Mission Creek strand as the primary fault bounding the Pacific and North American plates at this latitude and imply that 6 to 9 meters of elastic strain has accumulated along the fault since the most recent surface-rupturing earthquake, highlighting the potential for large earthquakes along this strand.


Author(s):  
Rumeng Guo ◽  
Hongfeng Yang ◽  
Yu Li ◽  
Yong Zheng ◽  
Lupeng Zhang

Abstract The 21 May 2021 Maduo earthquake occurred on the Kunlun Mountain Pass–Jiangcuo fault (KMPJF), a seismogenic fault with no documented large earthquakes. To probe its kinematics, we first estimate the slip rates of the KMPJF and Tuosuo Lake segment (TLS, ∼75 km north of the KMPJF) of the East Kunlun fault (EKLF) based on the secular Global Positioning System (GPS) data using the Markov chain Monte Carlo method. Our model reveals that the slip rates of the KMPJF and TLS are 1.7 ± 0.8 and 7.1 ± 0.3 mm/yr, respectively. Then, we invert high-resolution GPS and Interferometric Synthetic Aperture Radar observations to decipher the fault geometry and detailed coseismic slip distribution associated with the Maduo earthquake. The geometry of the KMPFJ significantly varies along strike, composed of five fault subsegments. The most slip is accommodated by two steeply dipping fault segments, with the patch of large sinistral slip concentrated in the shallow depth on a simple straight structure. The released seismic moment is ∼1.5×1020  N·m, equivalent to an Mw 7.39 event, with a peak slip of ∼9.3 m. Combining the average coseismic slip and slip rate of the main fault, an earthquake recurrence period of ∼1250−400+1120  yr is estimated. The Maduo earthquake reminds us to reevaluate the potential of seismic gaps where slip rates are low. Based on our calculated Coulomb failure stress, the Maduo earthquake imposes positive stress on the Maqin–Maqu segment of the EKLF, a long-recognized seismic gap, implying that it may accelerate the occurrence of the next major event in this region.


Geosphere ◽  
2020 ◽  
Author(s):  
Katherine A. Guns ◽  
Richard A Bennett ◽  
Joshua C. Spinler ◽  
Sally F. McGill

Assessing fault-slip rates in diffuse plate boundary systems such as the San Andreas fault in southern California is critical both to characterize seis­mic hazards and to understand how different fault strands work together to accommodate plate boundary motion. In places such as San Gorgonio Pass, the geometric complexity of numerous fault strands interacting in a small area adds an extra obstacle to understanding the rupture potential and behavior of each individual fault. To better understand partitioning of fault-slip rates in this region, we build a new set of elastic fault-block models that test 16 different model fault geometries for the area. These models build on previ­ous studies by incorporating updated campaign GPS measurements from the San Bernardino Mountains and Eastern Transverse Ranges into a newly calculated GPS velocity field that has been removed of long- and short-term postseismic displacements from 12 past large-magnitude earthquakes to estimate model fault-slip rates. Using this postseismic-reduced GPS velocity field produces a best- fitting model geometry that resolves the long-standing geologic-geodetic slip-rate discrepancy in the Eastern California shear zone when off-fault deformation is taken into account, yielding a summed slip rate of 7.2 ± 2.8 mm/yr. Our models indicate that two active strands of the San Andreas system in San Gorgonio Pass are needed to produce sufficiently low geodetic dextral slip rates to match geologic observations. Lastly, results suggest that postseismic deformation may have more of a role to play in affecting the loading of faults in southern California than previously thought.


2020 ◽  
Author(s):  
Zachery M. Lifton

Field photographs, stratigraphic columns, displacement modeling results, depth profile modeling results, and slip rate modeling results.


2020 ◽  
Author(s):  
Zachery M. Lifton

Field photographs, stratigraphic columns, displacement modeling results, depth profile modeling results, and slip rate modeling results.


2021 ◽  
Author(s):  
Remi Matrau ◽  
Yann Klinger ◽  
Jonathan Harrington ◽  
Ulas Avsar ◽  
Esther R. Gudmundsdottir ◽  
...  

<p>Paleoseismology is key to study earthquake recurrence and fault slip rates during the Late Pleistocene-Holocene. The Húsavík-Flatey Fault (HFF) in northern Iceland is a 100 km-long right-lateral transform fault connecting the onshore Northern Volcanic Zone to the offshore Kolbeinsey Ridge and accommodating, together with the Grímsey Oblique Rift (GOR), ~18 mm/yr of relative motion between the Eurasian and North American plates. Significant earthquakes occurred on the HFF in 1755, 1838 and 1872 with estimated magnitudes of 6.5-7. However, historical information on past earthquakes prior to 1755 is very limited in both timing and size.</p><p>We excavated five trenches in a small basin (Vestari Krubbsskál) located 5.5 km southeast of the town of Húsavík and at 300 m.a.s.l. and one trench in an alluvial fan (Traðargerði) located 0.5 km north of Húsavík and at 50 m.a.s.l. In a cold and wet environment, such as in coastal parts of Iceland, one has to take into account periglacial processes affecting the topsoil to discriminate tectonic from non-tectonic deformation. We used tephra layers in the Vestari Krubbsskál and Traðargerði trenches as well as birch wood samples in Traðargerði to constrain the timing of past earthquakes. Tephra layers Hekla-3 (2971 BP) and Hekla-4 (4331±20 BP) are visible in the top half of all the trenches. In addition, a few younger tephra layers are visible in the top part of the trenches. In Traðargerði several dark layers rich in organic matter are found, including birch wood-rich layers from the Earlier Birch Period (9000-7000 BP) and the Later Birch Period (5000-2500 BP). In Vestari Krubbsskál the lower halves of the trenches display mostly lacustrine deposits whereas in Traðargerði the lower half of the trench shows alluvial deposits overlaying coarser deposits (gravels/pebbles) most likely of late-glacial or early post-glacial origins. In addition, early Holocene tephra layers are observed in some of the trenches at both sites and may correspond to Askja-S (10800 BP), Saksunarvatn (10300 BP) and Vedde (12100 BP). These observations provide good age constraints and suggest that both the Vestari Krubbsskál and Traðargerði trenches cover the entire Holocene.</p><p>Trenches at both sites show significant normal deformation in addition to strike-slip, well correlated with their larger scale topographies (pull-apart basin in Vestari Krubbsskál and 45 m-high fault scarp in Traðargerði). We mapped layers, cracks and faults on all trench walls to build a catalogue of Holocene earthquakes. We identified events based on the upward terminations of the cracks and retrodeformation. Our results yield fewer major earthquakes than expected, suggesting that large earthquakes (around magnitude 7) are probably rare and the more typical HFF earthquakes of magnitude 6-6.5 likely produce limited topsoil deformation.[yk1]  Our interpretation also suggests that the Holocene slip rate [yk2] for the fault section we are studying may be slower than the estimated geodetic slip rate (6 to 9 mm/yr)[yk3]  for the entire onshore HFF, although secondary onshore sub-parallel fault strands could accommodate part of the deformation.</p>


Author(s):  
Jia Cheng ◽  
Thomas Chartier ◽  
Xiwei Xu

Abstract The Xianshuihe fault is a remarkable strike-slip fault characterized by high slip rate (∼10  mm/yr) and frequent strong historical earthquakes. The potential for future large earthquakes on this fault is enhanced by the 2008 Mw 7.9 Wenchuan earthquake. Previous works gave little attention to the probabilities of multisegment ruptures on the Xianshuihe fault. In this study, we build five possible multisegment rupture combination models for the Xianshuihe fault. The fault slip rates and historical earthquakes are used as input constraints to model the future seismicity on the fault segments and test whether the rupture combination models are appropriate. The segment combination model, based essentially on historical ruptures, has produced the seismicity rates most consistent with the historical records, although the model with ruptures on both the entire northern section and southern section should also be considered. The peak ground acceleration values with a return period of 475 yr calculated using the modeled rates on the Xianshuihe fault for both two models are on average larger than the values of the China Seismic Ground Motion Parameters Zonation Map.


Sign in / Sign up

Export Citation Format

Share Document