scholarly journals Projecting flood hazard under climate change: an alternative approach to model chains

2013 ◽  
Vol 1 (6) ◽  
pp. 7357-7385 ◽  
Author(s):  
J. M. Delgado ◽  
B. Merz ◽  
H. Apel

Abstract. Flood hazard projections under climate change are typically derived by applying model chains consisting of the following elements: "emission scenario – global climate model – downscaling, possibly including bias correction – hydrological model – flood frequency analysis". To date, this approach yields very uncertain results, due to the difficulties of global and regional climate models to represent precipitation. The implementation of such model chains requires large efforts, and their complexity is high. We propose for the Mekong River an alternative approach which is based on a shortened model chain: "emission scenario – global climate model – non-stationary flood frequency model". The underlying idea is to use a link between the Western Pacific monsoon and local flood characteristics: the variance of the monsoon drives a nonstationary flood frequency model, yielding a direct estimate of flood probabilities. This approach bypasses the uncertain precipitation, since the monsoon variance is derived from large-scale wind fields which are better represented by climate models. The simplicity of the monsoon-flood link allows deriving large ensembles of flood projections under climate change. We conclude that this is a worthwhile, complementary approach to the typical model chains in catchments where a substantial link between climate and floods is found.

2014 ◽  
Vol 14 (6) ◽  
pp. 1579-1589 ◽  
Author(s):  
J. M. Delgado ◽  
B. Merz ◽  
H. Apel

Abstract. Flood hazard projections under climate change are typically derived by applying model chains consisting of the following elements: "emission scenario – global climate model – downscaling, possibly including bias correction – hydrological model – flood frequency analysis". To date, this approach yields very uncertain results, due to the difficulties of global and regional climate models to represent precipitation. The implementation of such model chains requires major efforts, and their complexity is high. We propose for the Mekong River an alternative approach which is based on a shortened model chain: "emission scenario – global climate model – non-stationary flood frequency model". The underlying idea is to use a link between the Western Pacific monsoon and local flood characteristics: the variance of the monsoon drives a non-stationary flood frequency model, yielding a direct estimate of flood probabilities. This approach bypasses the uncertain precipitation, since the monsoon variance is derived from large-scale wind fields which are better represented by climate models. The simplicity of the monsoon–flood link allows deriving large ensembles of flood projections under climate change. We conclude that this is a worthwhile, complementary approach to the typical model chains in catchments where a substantial link between climate and floods is found.


2016 ◽  
Vol 155 (3) ◽  
pp. 407-420 ◽  
Author(s):  
R. S. SILVA ◽  
L. KUMAR ◽  
F. SHABANI ◽  
M. C. PICANÇO

SUMMARYTomato (Solanum lycopersicum L.) is one of the most important vegetable crops globally and an important agricultural sector for generating employment. Open field cultivation of tomatoes exposes the crop to climatic conditions, whereas greenhouse production is protected. Hence, global warming will have a greater impact on open field cultivation of tomatoes rather than the controlled greenhouse environment. Although the scale of potential impacts is uncertain, there are techniques that can be implemented to predict these impacts. Global climate models (GCMs) are useful tools for the analysis of possible impacts on a species. The current study aims to determine the impacts of climate change and the major factors of abiotic stress that limit the open field cultivation of tomatoes in both the present and future, based on predicted global climate change using CLIMatic indEX and the A2 emissions scenario, together with the GCM Commonwealth Scientific and Industrial Research Organisation (CSIRO)-Mk3·0 (CS), for the years 2050 and 2100. The results indicate that large areas that currently have an optimum climate will become climatically marginal or unsuitable for open field cultivation of tomatoes due to progressively increasing heat and dry stress in the future. Conversely, large areas now marginal and unsuitable for open field cultivation of tomatoes will become suitable or optimal due to a decrease in cold stress. The current model may be useful for plant geneticists and horticulturalists who could develop new regional stress-resilient tomato cultivars based on needs related to these modelling projections.


Proceedings ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 23 ◽  
Author(s):  
Carlos Garijo ◽  
Luis Mediero

Climate model projections can be used to assess the expected behaviour of extreme precipitations in the future due to climate change. The European part of the Coordinated Regional Climate Downscalling Experiment (EURO-CORDEX) provides precipitation projections for the future under various representative concentration pathways (RCPs) through regionalised Global Climate Model (GCM) outputs by a set of Regional Climate Models (RCMs). In this work, 12 combinations of GCM and RCM under two scenarios (RCP 4.5 and RCP 8.5) supplied by the EURO-CORDEX are analysed for the Iberian Peninsula. Precipitation quantiles for a set of probabilities of non-exceedance are estimated by using the Generalized Extreme Value (GEV) distribution and L-moments. Precipitation quantiles expected in the future are compared with the precipitation quantiles in the control period for each climate model. An approach based on Monte Carlo simulations is developed in order to assess the uncertainty from the climate model projections. Expected changes in the future are compared with the sampling uncertainty in the control period. Thus, statistically significant changes are identified. The higher the significance threshold, the fewer cells with significant changes are identified. Consequently, a set of maps are obtained in order to assist the decision-making process in subsequent climate change studies.


2018 ◽  
Vol 31 (20) ◽  
pp. 8281-8303 ◽  
Author(s):  
Kieran Bhatia ◽  
Gabriel Vecchi ◽  
Hiroyuki Murakami ◽  
Seth Underwood ◽  
James Kossin

As one of the first global coupled climate models to simulate and predict category 4 and 5 (Saffir–Simpson scale) tropical cyclones (TCs) and their interannual variations, the High-Resolution Forecast-Oriented Low Ocean Resolution (HiFLOR) model at the Geophysical Fluid Dynamics Laboratory (GFDL) represents a novel source of insight on how the entire TC intensification distribution could be transformed because of climate change. In this study, three 70-yr HiFLOR experiments are performed to identify the effects of climate change on TC intensity and intensification. For each of the experiments, sea surface temperature (SST) is nudged to different climatological targets and atmospheric radiative forcing is specified, allowing us to explore the sensitivity of TCs to these conditions. First, a control experiment, which uses prescribed climatological ocean and radiative forcing based on observations during the years 1986–2005, is compared to two observational records and evaluated for its ability to capture the mean TC behavior during these years. The simulated intensification distributions as well as the percentage of TCs that become major hurricanes show similarities with observations. The control experiment is then compared to two twenty-first-century experiments, in which the climatological SSTs from the control experiment are perturbed by multimodel projected SST anomalies and atmospheric radiative forcing from either 2016–35 or 2081–2100 (RCP4.5 scenario). The frequency, intensity, and intensification distribution of TCs all shift to higher values as the twenty-first century progresses. HiFLOR’s unique response to climate change and fidelity in simulating the present climate lays the groundwork for future studies involving models of this type.


2021 ◽  
Author(s):  
Iason Markantonis ◽  
Diamando Vlachogiannis ◽  
Thanasis Sfetsos ◽  
Ioannis Kioutsioukis ◽  
Nadia Politi

<p>Climate change is set to affect extreme climate and meteorological events. The combination of interacting physical processes (climate drivers) across various spatial and temporal scales resulting to an extreme event is referred to as compound event. So far, climate change impacts on compound events in Greece such as daily cold-wet events have not been explored. The complex geography and topography of Greece forms a variety of regions with different local climate and a great range in daily minimum temperature and precipitation distributions. This leads to the assumption that there we will also observe a variety in the distribution of cold-wet events depending on the region. Aim of our study in this work is first to identify the cold-wet events based on observational data and then to examine the predictive capability of regional different climate models and ERA-Interim against observations from the Hellenic National Meteorological Service (HNMS) stations for the occurrence of cold-wet compound events in the present climate. The study will focus on the colder and wetter period of the year (November-April) to determine the extremes for this period. Specifically, the datasets employed are from two EURO-CORDEX Regional Climate Models (RCMs) with 0.11° horizontal resolution and validated ERA-Interim Reanalysis downscaled with the Weather Research and Forecasting (WRF) model at 5km horizontal resolution, for the historical period 1980-2004. In particular, the RCM datasets analyses have been produced from SMHI-RCA4 driven by MPI-M-MPI-ESM-LR Global Climate Model (GCM) and CLMcom-CLM-CCLM4-8-17 driven by MOHC-HadGEM2-ES GCM. After the comparison with the observations, the gridded data from the models will give us the ability to observe the spatial distribution of the compound events.</p>


2012 ◽  
Vol 5 (1) ◽  
pp. 425-458 ◽  
Author(s):  
M. A. Chamberlain ◽  
C. Sun ◽  
R. J. Matear ◽  
M. Feng ◽  
S. J. Phipps

Abstract. At present, global climate models used to project changes in climate do not resolve mesoscale ocean features such as boundary currents and eddies. These missing features may be important to realistically project the marine impacts of climate change. Here we present a framework for dynamically downscaling coarse climate change projections utilising a global ocean model that resolves these features in the Australian region. The downscaling model used here is ocean-only. The ocean feedback on the air-sea fluxes is explored by restoring to surface temperature and salinity, as well as a calculated feedback to wind stress. These feedback approximations do not replace the need for fully coupled models, but they allow us to assess the sensitivity of the ocean in downscaled climate change simulations. Significant differences are found in sea surface temperature, salinity, stratification and transport between the downscaled projections and those of the climate model. While the magnitude of the climate change differences may vary with the feedback parameterisation used, the patterns of the climate change differences are consistent and develop rapidly indicating they are mostly independent of feedback that ocean differences may have on the air-sea fluxes. Until such a time when it is feasible to regularly run a global climate model with eddy resolution, our framework for ocean climate change downscaling provides an attractive way to explore how climate change may affect the mesoscale ocean environment.


2019 ◽  
Vol 117 ◽  
pp. 00005
Author(s):  
Cris Edward Monjardin ◽  
Clarence Cabundocan ◽  
Camille Ignacio ◽  
Christian Jedd Tesnado

This study assessed impacts of climate change on the frequency and severity of floods in the Pasig-Marikina River basin. Researchers used the historical data from PAG-ASA (Philippine Atmospheric, Geophysical and Astronomical Services Administration), specifically from Science Garden weather station. The historical data are coupled with a global climate model, the Hadley Center Model version 3 (HadCM3) to account for the natural variability of the climate system in the area. The observed data and the hydroclimatic data from HadCM3 was processed in Statistical Downscaling Model (SDSM) that results to rainfall data from 1961-2017 and change in temperature data from 2018-2048. A rainfall time series for the river basin was generated considering average seasonal effects in the area. A flood frequency curve was modelled. From that, flood value for 2048 was derived to be at 3950cu.m/s. Additionally, the rapid urbanization in the area has contributed to the changes in the river system making it more vulnerable to floods. The results of this study supports the claim that the Pasig-Marikina River basin will be affected by the climate variability in terms of the increase in rainfall depth and average temperatures, higher flood frequency and more massive floods in the future. This study could help local government units to enforce improvement and mitigation in their area to prevent these from happening.


2018 ◽  
Vol 15 ◽  
pp. 217-230
Author(s):  
María Pilar Amblar-Francés ◽  
María Asunción Pastor-Saavedra ◽  
María Jesús Casado-Calle ◽  
Petra Ramos-Calzado ◽  
Ernesto Rodríguez-Camino

Abstract. Over the past decades, the successive Coupled Model Intercomparison Projects (CMIPs) have produced a huge amount of global climate model simulations. Along these years, the climate models have advanced and can thus provide credible evolution of climate at least at continental or global scales since they are better representing physical processes and feedbacks in the climate system. Nevertheless, due to the coarse horizontal resolution of global climate models, it is necessary to downscale these results for their use to assess possible future impacts of climate change in climate sensitive ecosystems and sectors and to adopt adaptation strategies at local and national level. In this vein, the Spanish State Meteorological Agency (AEMET) has been producing since 2006 a set of reference downscaled climate change projections over Spain either applying statistical downscaling techniques to the outputs of the Global Climate Models (GCMs) or making use of the information generated by dynamical downscaling techniques through European projects or international initiatives such as PRUDENCE, ENSEMBLES and EURO-CORDEX. The AEMET strategy aims at exploiting all the available sources of information on climate change projections. The generalized use of statistical and dynamical downscaling approaches allow us to encompass a great number of global models and therefore to provide a better estimation of uncertainty. Most impact climate change studies over Spain make use of this reference downscaled projections emphasizing the estimation of uncertainties. Additionally to the rationale and history behind the AEMET generation of climate change scenarios, we focus on some preliminary analysis of the dependency of estimated uncertainties on the different sources of data.


2021 ◽  
pp. 1-69
Author(s):  
Zane Martin ◽  
Clara Orbe ◽  
Shuguang Wang ◽  
Adam Sobel

AbstractObservational studies show a strong connection between the intraseasonal Madden-Julian oscillation (MJO) and the stratospheric quasi-biennial oscillation (QBO): the boreal winter MJO is stronger, more predictable, and has different teleconnections when the QBO in the lower stratosphere is easterly versus westerly. Despite the strength of the observed connection, global climate models do not produce an MJO-QBO link. Here the authors use a current-generation ocean-atmosphere coupled NASA Goddard Institute for Space Studies global climate model (Model E2.1) to examine the MJO-QBO link. To represent the QBO with minimal bias, the model zonal mean stratospheric zonal and meridional winds are relaxed to reanalysis fields from 1980-2017. The model troposphere, including the MJO, is allowed to freely evolve. The model with stratospheric nudging captures QBO signals well, including QBO temperature anomalies. However, an ensemble of nudged simulations still lacks an MJO-QBO connection.


2021 ◽  
Vol 14 (8) ◽  
pp. 4865-4890
Author(s):  
Peter Uhe ◽  
Daniel Mitchell ◽  
Paul D. Bates ◽  
Nans Addor ◽  
Jeff Neal ◽  
...  

Abstract. Riverine flood hazard is the consequence of meteorological drivers, primarily precipitation, hydrological processes and the interaction of floodwaters with the floodplain landscape. Modeling this can be particularly challenging because of the multiple steps and differing spatial scales involved in the varying processes. As the climate modeling community increases their focus on the risks associated with climate change, it is important to translate the meteorological drivers into relevant hazard estimates. This is especially important for the climate attribution and climate projection communities. Current climate change assessments of flood risk typically neglect key processes, and instead of explicitly modeling flood inundation, they commonly use precipitation or river flow as proxies for flood hazard. This is due to the complexity and uncertainties of model cascades and the computational cost of flood inundation modeling. Here, we lay out a clear methodology for taking meteorological drivers, e.g., from observations or climate models, through to high-resolution (∼90 m) river flooding (fluvial) hazards. Thus, this framework is designed to be an accessible, computationally efficient tool using freely available data to enable greater uptake of this type of modeling. The meteorological inputs (precipitation and air temperature) are transformed through a series of modeling steps to yield, in turn, surface runoff, river flow, and flood inundation. We explore uncertainties at different modeling steps. The flood inundation estimates can then be related to impacts felt at community and household levels to determine exposure and risks from flood events. The approach uses global data sets and thus can be applied anywhere in the world, but we use the Brahmaputra River in Bangladesh as a case study in order to demonstrate the necessary steps in our hazard framework. This framework is designed to be driven by meteorology from observational data sets or climate model output. In this study, only observations are used to drive the models, so climate changes are not assessed. However, by comparing current and future simulated climates, this framework can also be used to assess impacts of climate change.


Sign in / Sign up

Export Citation Format

Share Document