scholarly journals Rank ordering multifractal analysis of the auroral electrojet index

2011 ◽  
Vol 18 (3) ◽  
pp. 277-285 ◽  
Author(s):  
G. Consolini ◽  
P. De Michelis

Abstract. In the second half of the 90s interest grew on the complex features of the magnetospheric dynamics in response to solar wind changes. An important series of papers were published on the occurrence of chaos, turbulence and complexity. Among them, particularly interesting was the study of the bursty and fractal/multifractal character of the high latitude energy release during geomagnetic storms, which was evidenced by analyzing the features of the Auroral Electrojet (AE) indices. Recently, the multifractal features of the small time-scale increments of AE-indices have been criticized in favor of a more simple fractal behavior. This is particularly true for the scaling features of the probability density functions (PDFs) of the AE index increments. Here, after a brief review of the nature of the fractal/multifractal features of the magnetospheric response to solar wind changes, we investigate the multifractal nature of the scaling features of the AE index increments PDFs using the Rank Ordering Multifractal Analysis (ROMA) technique. The ROMA results clearly demonstrate the existence of a hierarchy of scaling indices, depending on the increment amplitude, for the data collapsing of PDFs relative to increments at different time scales. Our results confirm the previous results by Consolini et al. (1996) and the more recent results by Rypdal and Rypdal (2010).

2016 ◽  
Vol 34 (1) ◽  
pp. 45-53 ◽  
Author(s):  
W. Chu ◽  
G. Qin

Abstract. Studying the access of the cosmic rays (CRs) into the magnetosphere is important to understand the coupling between the magnetosphere and the solar wind. In this paper we numerically studied CRs' magnetospheric access with vertical geomagnetic cutoff rigidities using the method proposed by Smart and Shea (1999). By the study of CRs' vertical geomagnetic cutoff rigidities at high latitudes we obtain the CRs' window (CRW) whose boundary is determined when the vertical geomagnetic cutoff rigidities drop to a value lower than a threshold value. Furthermore, we studied the area of CRWs and found out they are sensitive to different parameters, such as the z component of interplanetary magnetic field (IMF), the solar wind dynamic pressure, AE index, and Dst index. It was found that both the AE index and Dst index have a strong correlation with the area of CRWs during strong geomagnetic storms. However, during the medium storms, only AE index has a strong correlation with the area of CRWs, while Dst index has a much weaker correlation with the area of CRWs. This result on the CRW can be used for forecasting the variation of the cosmic rays during the geomagnetic storms.


2018 ◽  
Vol 36 (1) ◽  
pp. 205-211 ◽  
Author(s):  
Adriane Marques de Souza ◽  
Ezequiel Echer ◽  
Mauricio José Alves Bolzan ◽  
Rajkumar Hajra

Abstract. Solar-wind–geomagnetic activity coupling during high-intensity long-duration continuous AE (auroral electrojet) activities (HILDCAAs) is investigated in this work. The 1 min AE index and the interplanetary magnetic field (IMF) Bz component in the geocentric solar magnetospheric (GSM) coordinate system were used in this study. We have considered HILDCAA events occurring between 1995 and 2011. Cross-wavelet and cross-correlation analyses results show that the coupling between the solar wind and the magnetosphere during HILDCAAs occurs mainly in the period ≤ 8 h. These periods are similar to the periods observed in the interplanetary Alfvén waves embedded in the high-speed solar wind streams (HSSs). This result is consistent with the fact that most of the HILDCAA events under present study are related to HSSs. Furthermore, the classical correlation analysis indicates that the correlation between IMF Bz and AE may be classified as moderate (0.4–0.7) and that more than 80 % of the HILDCAAs exhibit a lag of 20–30 min between IMF Bz and AE. This result corroborates with Tsurutani et al. (1990) where the lag was found to be close to 20–25 min. These results enable us to conclude that the main mechanism for solar-wind–magnetosphere coupling during HILDCAAs is the magnetic reconnection between the fluctuating, negative component of IMF Bz and Earth's magnetopause fields at periods lower than 8 h and with a lag of about 20–30 min. Keywords. Magnetospheric physics (solar-wind–magnetosphere interactions)


2012 ◽  
Vol 2 (10) ◽  
pp. 1-3 ◽  
Author(s):  
Praveen Kumar Gupta ◽  
◽  
Puspraj Singh Puspraj Singh ◽  
Puspraj Singh Puspraj Singh ◽  
P. K. Chamadia P. K. Chamadia

2021 ◽  
Author(s):  
Sujan Prasad Gautam ◽  
Ashok Silwal ◽  
Prakash Poudel ◽  
Monika Karki ◽  
Binod Adhikari ◽  
...  

2008 ◽  
Vol 15 (4) ◽  
pp. 615-620 ◽  
Author(s):  
A. Szczepaniak ◽  
W. M. Macek

Abstract. We consider nonuniform energy transfer rate for solar wind turbulence depending on the solar cycle activity. To achieve this purpose we determine the generalized dimensions and singularity spectra for the experimental data of the solar wind measured in situ by Advanced Composition Explorer spacecraft during solar maximum (2001) and minimum (2006) at 1 AU. By determining the asymmetric singularity spectra we confirm the multifractal nature of different states of the solar wind. Moreover, for explanation of this asymmetry we propose a generalization of the usual so-called p-model, which involves eddies of different sizes for the turbulent cascade. Naturally, this generalization takes into account two different scaling parameters for sizes of eddies and one probability measure parameter, describing how the energy is transferred to smaller eddies. We show that the proposed model properly describes multifractality of the solar wind plasma.


2011 ◽  
Vol 29 (6) ◽  
pp. 965-971 ◽  
Author(s):  
R. J. Boynton ◽  
M. A. Balikhin ◽  
S. A. Billings ◽  
A. S. Sharma ◽  
O. A. Amariutei

Abstract. The NARMAX OLS-ERR methodology is applied to identify a mathematical model for the dynamics of the Dst index. The NARMAX OLS-ERR algorithm, which is widely used in the field of system identification, is able to identify a mathematical model for a wide class of nonlinear systems using input and output data. Solar wind-magnetosphere coupling functions, derived from analytical or data based methods, are employed as the inputs to such models and the outputs are geomagnetic indices. The newly deduced coupling function, p1/2V4/3BTsin6(θ/2), has been implemented as an input to model the Dst dynamics. It was shown that the identified model has a very good forecasting ability, especially with the geomagnetic storms.


2021 ◽  
Author(s):  
Mikhail Fridman

<p>Mid-term prognoses of geomagnetic storms require an improvement since theу are known to have rather low accuracy which does not exceed 40% in solar minimum. We claim that the problem lies in the approach. Current mid-term forecasts are typically built using the same paradigm as short-term ones and suggest an analysis of the solar wind conditions typical for geomagnetic storms. According to this approach, there is a 20-60 minute delay between the arrival of a geoeffective flow/stream to L1 and the arrival of the signal from the spacecraft to Earth, which gives a necessary advance time for a short-term prognosis. For the mid-term forecast with an advance time from 3 hours to 3 days, this is not enough. Therefore, we have suggested finding precursors of geomagnetic storms observed in the solar wind. Such precursors are variations in the solar wind density and the interplanetary magnetic field in the ULF range associated with crossings of magnetic cavities in front of the arriving geoeffective high-speed streams and flows (Khabarova et al., 2015, 2016, 2018; Adhikari et al., 2019). Despite some preliminary studies have shown that this might be a perspective way to create a mid-term prognosis (Khabarova 2007; Khabarova & Yermolaev, 2007), the problem of automatization of the prognosis remained unsolved.</p>


2017 ◽  
Vol 35 (2) ◽  
pp. 217-225 ◽  
Author(s):  
Bing Yang ◽  
Eric Donovan ◽  
Jun Liang ◽  
Emma Spanswick

Abstract. Previous studies of the motion of patches that comprise patchy pulsating aurora (PPA) have been based on a limited number of events. In this study, we use a large database of PPA patches obtained from the THEMIS all-sky imager at Gillam (66.18° magnetic latitude, 332.78° magnetic longitude) between May 2006 and July 2013 to explore the velocity of the PPA patches. Our results show that PPA patches mainly drift eastward after midnight and westward before midnight. In addition, we found that patch velocities are in the expected range of convection given the magnetic latitude and that the velocities do not seem to depend on auroral electrojet (AE) index. The results suggest that the drifts of auroral patches could be a proxy for the ionospheric convection, and possibly provide a convenient and accurate method to remotely sense the magnetospheric convection.


Sign in / Sign up

Export Citation Format

Share Document