scholarly journals Is coccolithophore distribution in the Mediterranean Sea related to seawater carbonate chemistry?

Ocean Science ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 13-32 ◽  
Author(s):  
A. Oviedo ◽  
P. Ziveri ◽  
M. Álvarez ◽  
T. Tanhua

Abstract. The Mediterranean Sea is considered a "hot spot" for climate change, being characterized by oligotrophic to ultra-oligotrophic waters and rapidly increasing seasurface temperature and changing carbonate chemistry. Coccolithophores are considered a dominant phytoplankton group in these waters. As marine calcifying organisms they are expected to respond to the ongoing changes in seawater carbonate chemistry. We provide here a description of the springtime coccolithophore distribution in the Mediterranean Sea and relate this to a broad set of in situ-measured environmental variables. Samples were taken during the R/V Meteor (M84/3) oceanographic cruise in April 2011, between 0 and 100 m water depth from 28 stations. Total diatom and silicoflagellate cell concentrations are also presented. Our results highlight the importance of seawater carbonate chemistry, especially [CO32−] but also [PO43−] in unraveling the distribution of heterococcolithophores, the most abundant coccolithophore life phase. Holo- and heterococcolithophores respond differently to environmental factors. For instance, changes in heterococcolithophore assemblages were best linked to the combination of [CO32−], pH, and salinity (ρ = 0.57), although salinity might be not functionally related to coccolithophore assemblage distribution. Holococcolithophores, on the other hand, showed higher abundances and species diversity in oligotrophic areas (best fit, ρ = 0.32 for nutrients), thriving in nutrient-depleted waters. Clustering of heterococcolithophores revealed three groups of species sharing more than 65% similarities. These clusters could be assigned to the eastern and western basins and deeper layers (below 50 m), respectively. In addition, the species Gephyrocapsa oceanica, G. muellerae, and Emiliania huxleyi morphotype B/C are spatially distributed together and trace the influx of Atlantic waters into the Mediterranean Sea. The results of the present work emphasize the importance of considering holo- and heterococcolithophores separately when analyzing changes in species assemblages and diversity. Our findings suggest that coccolithophores are a main phytoplankton group in the entire Mediterranean Sea and can dominate over siliceous phytoplankton. They have life stages that are expected to respond differently to the variability in seawater carbonate chemistry and nutrient concentrations.

2014 ◽  
Vol 11 (1) ◽  
pp. 613-653 ◽  
Author(s):  
A. M. Oviedo ◽  
P. Ziveri ◽  
M. Álvarez ◽  
T. Tanhua

Abstract. The Mediterranean Sea is considered a "hot-spot" for climate change, being characterized by oligotrophic to ultra-oligotrophic waters and rapidly changing carbonate chemistry. Coccolithophores are considered a dominant phytoplankton group in these waters. As a marine calcifying organism they are expected to respond to the ongoing changes in seawater CO2 systems parameters. However, very few studies have covered the entire Mediterranean physiochemical gradients from the Strait of Gibraltar to the Eastern Mediterranean Levantine Basin. We provide here an updated state of knowledge of the coccolithophore distribution in the Mediterranean Sea and relate this to a broad set of in situ measured environmental variables. Samples were taken during the Meteor (M84/3) oceanographic cruise in April 2011, between 0–100 m water depth from 28 stations. Total diatom, dinoflagellate and silicoflagellate cell concentrations are also presented. Our results highlight the importance of seawater carbonate chemistry, especially CO32−, in unraveling the distribution of heterococcolithophores, the most abundant coccolithophore life phase. Holo- and hetero-coccolithophores respond differently to environmental factors. For instance, changes in heterococcolithophore assemblages were best linked to the combination of [CO32−], pH, and salinity (ρ = 0.57) although salinity might be not functionally related to coccolithophore assemblage distribution. Holococcolithophores, on the other hand, were preferentially distributed and showed higher species diversity in oligotrophic areas (Best fit, ρ = 0.32 for nutrients), thriving in nutrient depleted waters. Clustering of heterococcolithophores revealed three groups of species sharing more than 65% similarities. These clusters could be assigned to the eastern and western basins, and deeper layers (below 50 m), respectively. In addition, the species Gephyrocapsa oceanica, G. muellerae and Emiliania huxleyi morphotype B/C are spatially distributed together and trace the influx of Atlantic waters into the Mediterranean Sea. The results of the present work emphasize the importance of considering holo- and hetero-coccolithophores separately when analyzing changes in species assemblages and diversity. Our findings clearly show that coccolithophores are a dominant phytoplankton group in the entire Mediterranean Sea; they have life stages that are expected to respond differently to the variability in seawater carbonate chemistry and nutrient concentrations.


2014 ◽  
Vol 11 (10) ◽  
pp. 2857-2869 ◽  
Author(s):  
K. J. S. Meier ◽  
L. Beaufort ◽  
S. Heussner ◽  
P. Ziveri

Abstract. Ocean acidification is a result of the uptake of anthropogenic CO2 from the atmosphere into the ocean and has been identified as a major environmental and economic threat. The release of several thousands of petagrams of carbon over a few hundred years will have an overwhelming effect on surface ocean carbon reservoirs. The recorded and anticipated changes in seawater carbonate chemistry will presumably affect global oceanic carbonate production. Coccolithophores as the primary calcifying phytoplankton group, and especially Emiliania huxleyi as the most abundant species have shown a reduction of calcification at increased CO2 concentrations for the majority of strains tested in culture experiments. A reduction of calcification is associated with a decrease in coccolith weight. However, the effect in monoclonal cultures is relatively small compared to the strong variability displayed in natural E. huxleyi communities, as these are a mix of genetically and sometimes morphologically distinct types. Average coccolith weight is likely influenced by the variability in seawater carbonate chemistry in different parts of the world's oceans and on glacial/interglacial time scales due to both physiological effects and morphotype selectivity. An effect of the ongoing ocean acidification on E. huxleyi calcification has so far not been documented in situ. Here, we analyze E. huxleyi coccolith weight from the NW Mediterranean Sea in a 12-year sediment trap series, and surface sediment and sediment core samples using an automated recognition and analyzing software. Our findings clearly show (1) a continuous decrease in the average coccolith weight of E. huxleyi from 1993 to 2005, reaching levels below pre-industrial (Holocene) and industrial (20th century) values recorded in the sedimentary record and (2) seasonal variability in coccolith weight that is linked to the coccolithophore productivity. The observed long-term decrease in coccolith weight is most likely a result of the changes in the surface ocean carbonate system. Our results provide the first indications of an in situ impact of ocean acidification on coccolithophore weight in a natural E. huxleyi population, even in the highly alkaline Mediterranean Sea.


2013 ◽  
Vol 10 (12) ◽  
pp. 19701-19730 ◽  
Author(s):  
K. J. S. Meier ◽  
L. Beaufort ◽  
S. Heussner ◽  
P. Ziveri

Abstract. Ocean acidification is a result of the uptake of anthropogenic CO2 from the atmosphere into the ocean and has been identified as a major environmental and economic threat. The release of several thousands of petagrams of carbon over a few hundred years will overwhelm the capacity of the surface ocean reservoirs to absorb carbon. The recorded and anticipated changes in seawater carbonate chemistry will presumably affect the global oceanic carbonate production. Coccolithophores as the primary calcifying phytoplankton group, and especially Emiliania huxleyi as the most abundant species have shown a reduction of calcification at increased CO2 concentrations for the majority of strains tested in culture experiments. A reduction of calcification is associated with a decrease in coccolith weight. However, the effect in monoclonal cultures is relatively small compared to the strong variability displayed in natural E. huxleyi communities, as these are a mix of genetically and sometimes morphologically distinct types. Average coccolith weight is likely influenced by the variability in seawater carbonate chemistry in different parts of the worlds' oceans and on glacial/interglacial time scales due to both physiological effects and morphotype selectivity. An effect of the ongoing ocean acidification on E. huxleyi calcification has so far not been documented in situ. Here, we analyze E. huxleyi coccolith weight from the NW Mediterranean Sea in a 12 yr sediment trap series, and surface sediment and sediment core samples using an automated recognition and analyzing software. Our findings clearly show (1) a continuous decrease in the average coccolith weight of E. huxleyi from 1993 to 2005, reaching levels below pre-industrial Holocene and industrial 20th century values recorded in the sedimentary record, and (2) seasonal variability in coccolith weight that is linked to the coccolithophore production. The observed long-term decrease in coccolith weight is most likely a result of the changes in the surface ocean carbonate system. Our results provide first indications of an in situ impact of ocean acidification on coccolithophore weight in a natural E. huxleyi population even in the highly alkaline Mediterranean Sea.


2018 ◽  
Author(s):  
Camille Richon ◽  
Jean-Claude Dutay ◽  
Laurent Bopp ◽  
Briac Le Vu ◽  
James C. Orr ◽  
...  

Abstract. The Mediterranean region is a climate change hot-spot. Increasing greenhouse gas emissions are projected to lead to a significant warming of Mediterranean Sea waters, as well as major changes in its circulation, but the subsequent effects of such changes on marine biogeochemistry are still poorly understood. Our aim is to investigate the changes in nutrient concentrations and biological productivity in response to climate change in the Mediterranean region. To do so, we perform transient simulations with the coupled high resolution model NEMOMED8/PISCES using the pessimistic IPCC SRES-A2 socio-economic scenario and corresponding Atlantic, Black Sea, and coastal nutrient inputs. Our results indicate that nitrate is accumulating in the Mediterranean Sea over the 21st century, whereas no tendency is found for phosphorus. These contrasted variations result from an unbalanced nitrogen-to-phosphorus input from external sources and lead to changes in phytoplankton nutrient limitation factors. In addition, phytoplankton net primary productivity is reduced by 10 % in the 2090s in comparison to the present state, with reductions of up to 50 % in some regions such as the Aegean Sea as a result of nutrient limitation and vertical stratification. We also perform sensitivity tests in order to study separately the effects of climate and biogeochemical input changes on the Mediterranean future state. This article is a first step in the study of transient climate change effects on the Mediterranean biogeochemistry, but calls for coordinated multi-model efforts to explore the various uncertainty sources of such a future projection.


2018 ◽  
Author(s):  
Athanasia Iona ◽  
Athanasios Theodorou ◽  
Sarantis Sofianos ◽  
Sylvain Watelet ◽  
Charles Troupin ◽  
...  

Abstract. We present a new product composed of a set of thermohaline climatic indices from 1950 to 2015 for the Mediterranean Sea such as decadal temperature and salinity anomalies, their mean values over selected depths, decadal ocean heat and salt content anomalies at selected depth layers as well as their long times series. It is produced from a new high-resolution climatology of temperature and salinity on a 1/8° regular grid based on historical high quality in situ observations. Ocean heat and salt content differences between 1980–2015 and 1950–1979 are compared for evaluation of the climate shift in the Mediterranean Sea. The spatial patterns of heat and salt content shifts demonstrate in greater detail than ever before that the climate changes differently in the several regions of the basin. Long time series of heat and salt content for the period 1950 to 2015 are also provided which indicate that in the Mediterranean Sea there is a net mean volume warming and salting since 1950 with acceleration during the last two decades. The time series also show that the ocean heat content seems to fluctuate on a cycle of about 40 years and seems to follow the Atlantic Multidecadal Oscillation climate cycle indicating that the natural large scale atmospheric variability could be superimposed on to the warming trend. This product is an observations-based estimation of the Mediterranean climatic indices. It relies solely on spatially interpolated data produced from in-situ observations averaged over decades in order to smooth the decadal variability and reveal the long term trends with more accuracy. It can provide a valuable contribution to the modellers' community, next to the satellite-based products and serve as a baseline for the evaluation of climate-change model simulations contributing thus to a better understanding of the complex response of the Mediterranean Sea to the ongoing global climate change. The product is available here: https://doi.org/10.5281/zenodo.1210100.


Ocean Science ◽  
2013 ◽  
Vol 9 (5) ◽  
pp. 789-803 ◽  
Author(s):  
T. Tanhua ◽  
D. Hainbucher ◽  
K. Schroeder ◽  
V. Cardin ◽  
M. Álvarez ◽  
...  

Abstract. The Mediterranean Sea is a semi-enclosed sea characterized by high salinities, temperatures and densities. The net evaporation exceeds the precipitation, driving an anti-estuarine circulation through the Strait of Gibraltar, contributing to very low nutrient concentrations. The Mediterranean Sea has an active overturning circulation, one shallow cell that communicates directly with the Atlantic Ocean, and two deep overturning cells, one in each of the two main basins. It is surrounded by populated areas and is thus sensitive to anthropogenic forcing. Several dramatic changes in the oceanographic and biogeochemical conditions have been observed during the past several decades, emphasizing the need to better monitor and understand the changing conditions and their drivers. During 2011 three oceanographic cruises were conducted in a coordinated fashion in order to produce baseline data of important physical and biogeochemical parameters that can be compared to historic data and be used as reference for future observational campaigns. In this article we provide information on the Mediterranean Sea oceanographic situation, and present a short review that will serve as background information for the special issue in Ocean Science on "Physical, chemical and biological oceanography of the Mediterranean Sea". An important contribution of this article is the set of figures showing the large-scale distributions of physical and chemical properties along the full length of the Mediterranean Sea.


2018 ◽  
Vol 10 (4) ◽  
pp. 1829-1842 ◽  
Author(s):  
Athanasia Iona ◽  
Athanasios Theodorou ◽  
Sarantis Sofianos ◽  
Sylvain Watelet ◽  
Charles Troupin ◽  
...  

Abstract. We present a new product composed of a set of thermohaline climatic indices from 1950 to 2015 for the Mediterranean Sea such as decadal temperature and salinity anomalies, their mean values over selected depths, decadal ocean heat and salt content anomalies at selected depth layers as well as their long time series. It is produced from a new high-resolution climatology of temperature and salinity on a 1∕8∘ regular grid based on historical high-quality in situ observations. Ocean heat and salt content differences between 1980–2015 and 1950–1979 are compared for evaluation of the climate shift in the Mediterranean Sea. The two successive periods are chosen according to the standard WMO climate normals. The spatial patterns of heat and salt content shifts demonstrate that the climate changes differently in the several regions of the basin. Long time series of heat and salt content for the period 1950 to 2015 are also provided which indicate that in the Mediterranean Sea there is a net mean volume warming and salinification since 1950 that has accelerated during the last two decades. The time series also show that the ocean heat content seems to fluctuate on a cycle of about 40 years and seems to follow the Atlantic Multidecadal Oscillation climate cycle, indicating that the natural large-scale atmospheric variability could be superimposed onto the warming trend. This product is an observation-based estimation of the Mediterranean climatic indices. It relies solely on spatially interpolated data produced from in situ observations averaged over decades in order to smooth the decadal variability and reveal the long-term trends. It can provide a valuable contribution to the modellers' community, next to the satellite-based products, and serve as a baseline for the evaluation of climate-change model simulations, thus contributing to a better understanding of the complex response of the Mediterranean Sea to the ongoing global climate change. The product is available in netCDF at the following sources: annual and seasonal T∕S anomalies (https://doi.org/10.5281/zenodo.1408832), annual and seasonal T∕S vertical averaged anomalies (https://doi.org/10.5281/zenodo.1408929), annual and seasonal areal density of OHC/OSC anomalies (https://doi.org/10.5281/zenodo.1408877), annual and seasonal linear trends of T∕S, OHC/OSC anomalies (https://doi.org/10.5281/zenodo.1408917), annual and seasonal time series of T∕S, OHC/OSC anomalies (https://doi.org/10.5281/zenodo.1411398), and differences of two 30-year averages of annual and seasonal T∕S, OHC/OSC anomalies (https://doi.org/10.5281/zenodo.1408903).


2021 ◽  
Vol 12 ◽  
Author(s):  
Annika Vaksmaa ◽  
Katrin Knittel ◽  
Alejandro Abdala Asbun ◽  
Maaike Goudriaan ◽  
Andreas Ellrott ◽  
...  

Plastic particles in the ocean are typically covered with microbial biofilms, but it remains unclear whether distinct microbial communities colonize different polymer types. In this study, we analyzed microbial communities forming biofilms on floating microplastics in a bay of the island of Elba in the Mediterranean Sea. Raman spectroscopy revealed that the plastic particles mainly comprised polyethylene (PE), polypropylene (PP), and polystyrene (PS) of which polyethylene and polypropylene particles were typically brittle and featured cracks. Fluorescence in situ hybridization and imaging by high-resolution microscopy revealed dense microbial biofilms on the polymer surfaces. Amplicon sequencing of the 16S rRNA gene showed that the bacterial communities on all plastic types consisted mainly of the orders Flavobacteriales, Rhodobacterales, Cytophagales, Rickettsiales, Alteromonadales, Chitinophagales, and Oceanospirillales. We found significant differences in the biofilm community composition on PE compared with PP and PS (on OTU and order level), which shows that different microbial communities colonize specific polymer types. Furthermore, the sequencing data also revealed a higher relative abundance of archaeal sequences on PS in comparison with PE or PP. We furthermore found a high occurrence, up to 17% of all sequences, of different hydrocarbon-degrading bacteria on all investigated plastic types. However, their functioning in the plastic-associated biofilm and potential role in plastic degradation needs further assessment.


2021 ◽  
Author(s):  
Romain Escudier ◽  
Emanuela Clementi ◽  
Mohamed Omar ◽  
Andrea Cipollone ◽  
Jenny Pistoia ◽  
...  

<p>In order to be able to predict the future ocean climate and weather, it is crucial to understand what happened in the past and the mechanisms responsible for the ocean variability. This is particularly true in a complex area such as the Mediterranean Sea with diverse dynamics such as deep convection and thermohaline circulation or coastal hydrodynamics. To this end, effective tools are reanalyses or reconstructions of the past ocean state. </p><p>Here we present a new physical reanalysis of the Mediterranean Sea at high resolution, developed in the Copernicus Marine Environment Monitoring Service (CMEMS) framework. The hydrodynamic model is based on the Nucleus for European Modelling of the Ocean (NEMO) combined with a variational data assimilation scheme (OceanVar).</p><p>The model has a horizontal resolution of 1/24<strong>°</strong> and 141 vertical z* levels and provides daily and monthly 3D values of temperature, salinity, sea level and currents. Hourly ECMWF ERA-5 atmospheric fields force the model and daily boundary conditions in the Atlantic are taken from the global CMCC C-GLORS reanalysis. 39 rivers model the freshwater input to the basin plus the Dardanelles. The reanalysis covers 33-years, initialized from SeaDataNet climatology in January 1985, getting to a nominal state after a two-years spin-up and ending in 2019. In-situ data from CTD, ARGO floats and XBT are assimilated into the model in combination with satellite altimetry data.</p><p>This reanalysis has been validated and assessed through comparison to in-situ and satellite observations as well as literature climatologies. The results show an overall improvement of the skill and a better representation of the main dynamics of the region compared to the previous, lower resolution (1/16<strong>°</strong>) reanalysis. Temperature and salinity RMSE is decreased by respectively 12% and 20%. The deeper biases in salinity of the previous version are corrected and the new reanalysis present a better representation of the deep convection in the Gulf of Lion. Climate signals show continuous increase of the temperature due to climate change but also in salinity.</p><p>The new reanalysis will allow the study of physical processes at multi-scales, from the large scale to the transient small mesoscale structures.</p>


2016 ◽  
Vol 74 (4) ◽  
pp. 1074-1082 ◽  
Author(s):  
Maoz Fine ◽  
Rami Tsadok ◽  
Dalit Meron ◽  
Stephanie Cohen ◽  
Marco Milazzo

Vermetid reefs in the Mediterranean Sea are increasingly affected by both anthropogenic actions and global climate change, which are putting this coastal ecosystem at risk. The main species involved in building these reefs are two species of intertidal vermetid gastropods and the crustose calcareous alga, Neogoniolithon brassica-florida, which cements the gastropod shells and thus solidifying the reef edges. In the present study, we examined the pattern of distribution in the field and the environmental sensitivity (thermal tolerance, resilience to low pH, high light intensity and desiccation) of N. brassica-florida along the coasts of Sicily and Israel by means of chlorophyll fluorescence and total alkalinity measurements in situ and in the laboratory. Tidal regimes did not affect photosynthesis of N. brassica-florida but light intensity in the intertidal did. Sensitivity to increased light intensity was amplified by elevated temperature and reduced pH. Winter temperature above 16 °C caused a decrease in the photosynthetic performance of photo-system II. Similarly, a decrease in pH resulted in decreased maximum photosynthetic yield and electron transport rate. Calcification was significantly lower at pH 7.9 as compared with ambient (8.1) pH. In fact, dissolution at pH 7.9 at night was higher than net calcification during the day, suggesting that N. brassica-florida may not be able to contribute to reef accretion under the levels of seawater warming and ocean acidification projected by the end of this century.


Sign in / Sign up

Export Citation Format

Share Document