scholarly journals Controlling atmospheric forcing parameters of global ocean models: sequential assimilation of sea surface Mercator-Ocean reanalysis data

Ocean Science ◽  
2009 ◽  
Vol 5 (4) ◽  
pp. 403-419 ◽  
Author(s):  
C. Skandrani ◽  
J.-M. Brankart ◽  
N. Ferry ◽  
J. Verron ◽  
P. Brasseur ◽  
...  

Abstract. In the context of stand alone ocean models, the atmospheric forcing is generally computed using atmospheric parameters that are derived from atmospheric reanalysis data and/or satellite products. With such a forcing, the sea surface temperature that is simulated by the ocean model is usually significantly less accurate than the synoptic maps that can be obtained from the satellite observations. This not only penalizes the realism of the ocean long-term simulations, but also the accuracy of the reanalyses or the usefulness of the short-term operational forecasts (which are key GODAE and MERSEA objectives). In order to improve the situation, partly resulting from inaccuracies in the atmospheric forcing parameters, the purpose of this paper is to investigate a way of further adjusting the state of the atmosphere (within appropriate error bars), so that an explicit ocean model can produce a sea surface temperature that better fits the available observations. This is done by performing idealized assimilation experiments in which Mercator-Ocean reanalysis data are considered as a reference simulation describing the true state of the ocean. Synthetic observation datasets for sea surface temperature and salinity are extracted from the reanalysis to be assimilated in a low resolution global ocean model. The results of these experiments show that it is possible to compute piecewise constant parameter corrections, with predefined amplitude limitations, so that long-term free model simulations become much closer to the reanalysis data, with misfit variance typically divided by a factor 3. These results are obtained by applying a Monte Carlo method to simulate the joint parameter/state prior probability distribution. A truncated Gaussian assumption is used to avoid the most extreme and non-physical parameter corrections. The general lesson of our experiments is indeed that a careful specification of the prior information on the parameters and on their associated uncertainties is a key element in the computation of realistic parameter estimates, especially if the system is affected by other potential sources of model errors.

2009 ◽  
Vol 6 (2) ◽  
pp. 1129-1171
Author(s):  
C. Skandrani ◽  
J.-M. Brankart ◽  
N. Ferry ◽  
J. Verron ◽  
P. Brasseur ◽  
...  

Abstract. In the context of stand alone ocean models, the atmospheric forcing is generally computed using atmospheric parameters that are derived from atmospheric reanalysis data and/or satellite products. With such a forcing, the sea surface temperature that is simulated by the ocean model is usually significantly less accurate than the synoptic maps that can be obtained from the satellite observations. This not only penalizes the realism of the ocean long-term simulations, but also the accuracy of the reanalyses or the usefulness of the short-term operational forecasts (which are key GODAE and MERSEA objectives). In order to improve the situation, partly resulting from inaccuracies in the atmospheric forcing parameters, the purpose of this paper is to investigate a way of further adjusting the state of the atmosphere (within appropriate error bars), so that an explicit ocean model can produce a sea surface temperature that better fits the available observations. This is done by performing idealized assimilation experiments in which Mercator-Ocean reanalysis data are considered as a reference simulation describing the true state of the ocean. Synthetic observation datasets for sea surface temperature and salinity are extracted from the reanalysis to be assimilated in a low resolution global ocean model. The results of these experiments show that it is possible to compute piecewise constant parameter corrections, with predefined amplitude limitations, so that long-term free model simulations become much closer to the reanalysis data, with misfit variance typically divided by a factor 3. These results are obtained by applying a Monte Carlo method to simulate the joint parameter/state prior probability distribution. A truncated Gaussian assumption is used to avoid the most extreme and non-physical parameter corrections. The general lesson of our experiments is indeed that a careful specification of the prior information on the parameters and on their associated uncertainties is a key element in the computation of realistic parameter estimates, especially if the system is affected by other potential sources of model errors.


2012 ◽  
Vol 5 (5) ◽  
pp. 1177-1194 ◽  
Author(s):  
M. A. Chamberlain ◽  
C. Sun ◽  
R. J. Matear ◽  
M. Feng ◽  
S. J. Phipps

Abstract. At present, global climate models used to project changes in climate poorly resolve mesoscale ocean features such as boundary currents and eddies. These missing features may be important to realistically project the marine impacts of climate change. Here we present a framework for dynamically downscaling coarse climate change projections utilising a near-global ocean model that resolves these features in the Australasian region, with coarser resolution elsewhere. A time-slice projection for a 2060s ocean was obtained by adding climate change anomalies to initial conditions and surface fluxes of a near-global eddy-resolving ocean model. Climate change anomalies are derived from the differences between present and projected climates from a coarse global climate model. These anomalies are added to observed fields, thereby reducing the effect of model bias from the climate model. The downscaling model used here is ocean-only and does not include the effects that changes in the ocean state will have on the atmosphere and air–sea fluxes. We use restoring of the sea surface temperature and salinity to approximate real-ocean feedback on heat flux and to keep the salinity stable. Extra experiments with different feedback parameterisations are run to test the sensitivity of the projection. Consistent spatial differences emerge in sea surface temperature, salinity, stratification and transport between the downscaled projections and those of the climate model. Also, the spatial differences become established rapidly (< 3 yr), indicating the importance of mesoscale resolution. However, the differences in the magnitude of the difference between experiments show that feedback of the ocean onto the air–sea fluxes is still important in determining the state of the ocean in these projections. Until such a time when it is feasible to regularly run a global climate model with eddy resolution, our framework for ocean climate change downscaling provides an attractive way to explore the response of mesoscale ocean features with climate change and their effect on the broader ocean.


2015 ◽  
Vol 12 (6) ◽  
pp. 2683-2704 ◽  
Author(s):  
X. Yi ◽  
B. Hünicke ◽  
N. Tim ◽  
E. Zorita

Abstract. Studies based on upwelling indices (sediment records, sea-surface temperature and wind) suggest that upwelling along the western coast of Arabian Sea is strongly affected by the Indian summer monsoon (ISM). In order to examine this relationship directly, we employ the vertical water mass transport produced by the eddy-resolving global ocean simulation STORM driven by meteorological reanalysis over the last 61 years. With its very high spatial resolution (10 km), STORM allows us to identify characteristics of the upwelling system. We analyze the co-variability between upwelling and meteorological and oceanic variables from 1950 to 2010. The analyses reveal high interannual correlations between coastal upwelling and along-shore wind-stress (r=0.73) as well as with sea-surface temperature (r0.83). However, the correlation between the upwelling and the ISM is small and other factors might contribute to the upwelling variability. In addition, no long-term trend is detected in our modeled upwelling time series.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 454
Author(s):  
Andrew R. Jakovlev ◽  
Sergei P. Smyshlyaev ◽  
Vener Y. Galin

The influence of sea-surface temperature (SST) on the lower troposphere and lower stratosphere temperature in the tropical, middle, and polar latitudes is studied for 1980–2019 based on the MERRA2, ERA5, and Met Office reanalysis data, and numerical modeling with a chemistry-climate model (CCM) of the lower and middle atmosphere. The variability of SST is analyzed according to Met Office and ERA5 data, while the variability of atmospheric temperature is investigated according to MERRA2 and ERA5 data. Analysis of sea surface temperature trends based on reanalysis data revealed that a significant positive SST trend of about 0.1 degrees per decade is observed over the globe. In the middle latitudes of the Northern Hemisphere, the trend (about 0.2 degrees per decade) is 2 times higher than the global average, and 5 times higher than in the Southern Hemisphere (about 0.04 degrees per decade). At polar latitudes, opposite SST trends are observed in the Arctic (positive) and Antarctic (negative). The impact of the El Niño Southern Oscillation phenomenon on the temperature of the lower and middle atmosphere in the middle and polar latitudes of the Northern and Southern Hemispheres is discussed. To assess the relative influence of SST, CO2, and other greenhouse gases’ variability on the temperature of the lower troposphere and lower stratosphere, numerical calculations with a CCM were performed for several scenarios of accounting for the SST and carbon dioxide variability. The results of numerical experiments with a CCM demonstrated that the influence of SST prevails in the troposphere, while for the stratosphere, an increase in the CO2 content plays the most important role.


Ocean Science ◽  
2010 ◽  
Vol 6 (2) ◽  
pp. 491-501 ◽  
Author(s):  
G. I. Shapiro ◽  
D. L. Aleynik ◽  
L. D. Mee

Abstract. There is growing understanding that recent deterioration of the Black Sea ecosystem was partly due to changes in the marine physical environment. This study uses high resolution 0.25° climatology to analyze sea surface temperature variability over the 20th century in two contrasting regions of the sea. Results show that the deep Black Sea was cooling during the first three quarters of the century and was warming in the last 15–20 years; on aggregate there was a statistically significant cooling trend. The SST variability over the Western shelf was more volatile and it does not show statistically significant trends. The cooling of the deep Black Sea is at variance with the general trend in the North Atlantic and may be related to the decrease of westerly winds over the Black Sea, and a greater influence of the Siberian anticyclone. The timing of the changeover from cooling to warming coincides with the regime shift in the Black Sea ecosystem.


Sign in / Sign up

Export Citation Format

Share Document