scholarly journals A vertical-mode decomposition to investigate low-frequency internal motion across the Atlantic at 26° N

Ocean Science ◽  
2012 ◽  
Vol 8 (3) ◽  
pp. 345-367 ◽  
Author(s):  
Z. B. Szuts ◽  
J. R. Blundell ◽  
M. P. Chidichimo ◽  
J. Marotzke

Abstract. Hydrographic data from full-depth moorings maintained by the Rapid/\\-MOCHA project and spanning the Atlantic at 26° N are decomposed into vertical modes in order to give a dynamical framework for interpreting the observed fluctuations. Vertical modes at each mooring are fit to pressure perturbations using a Gauss-Markov inversion. Away from boundaries, the vertical structure is almost entirely described by the first baroclinic mode, as confirmed by high correlation between the original signal and reconstructions using only the first baroclinic mode. These first baroclinic motions are also highly coherent with altimetric sea surface height (SSH). Within a Rossby radius (45 km) of the western and eastern boundaries, however, the decomposition contains significant variance at higher modes, and there is a corresponding decrease in the agreement between SSH and either the original signal or the first baroclinic mode reconstruction. Compared to the full transport signal, transport fluctuations described by the first baroclinic mode represent <25 km of the variance within 10 km of the western boundary, in contrast to 60 km at other locations. This decrease occurs within a Rossby radius of the western boundary. At the eastern boundary, a linear combination of many baroclinic modes is required to explain the observed vertical density profile of the seasonal cycle, a result that is consistent with an oceanic response to wind-forcing being trapped to the eastern boundary.

2011 ◽  
Vol 8 (5) ◽  
pp. 2047-2100 ◽  
Author(s):  
Z. B. Szuts ◽  
J. R. Blundell ◽  
M. P. Chidichimo ◽  
J. Marotzke

Abstract. Hydrographic data from full-depth moorings maintained by the RAPID/MOCHA project that span the Atlantic at 26° N are decomposed into vertical modes, in order to give a dynamical framework for interpreting the observed fluctuations. Vertical modes at each mooring are fit to pressure perturbations using a Gauss-Markov inversion. Away from boundaries, the vertical structure is almost entirely described by the first baroclinic mode, as confirmed by high correlation between the original signal and reconstructions using only the first baroclinic mode. These first baroclinic motions are also highly coherent with altimetric sea surface height (SSH). On both the western and eastern boundaries, however, the decomposition contains significant variance at higher modes, and there is a corresponding decrease in the agreement between SSH and either the original signal or the first baroclinic mode reconstruction. At the boundaries, the transport fluctuations described by the first baroclinic mode represent less than 10% of the variance of the full transport signal. At the eastern boundary, a linear combination of many baroclinic modes is required to explain the observed vertical density profile of the seasonal cycle, a result that is consistent with the oceanic response to wind-forcing not propagating far from the eastern boundary.


Micromachines ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 134 ◽  
Author(s):  
Qing Lu ◽  
Lixin Pang ◽  
Haoqian Huang ◽  
Chong Shen ◽  
Huiliang Cao ◽  
...  

High-G MEMS accelerometers have been widely used in monitoring natural disasters and other fields. In order to improve the performance of High-G MEMS accelerometers, a denoising method based on the combination of empirical mode decomposition (EMD) and wavelet threshold is proposed. Firstly, EMD decomposition is performed on the output of the main accelerometer to obtain the intrinsic mode function (IMF). Then, the continuous mean square error rule is used to find energy cut-off point, and then the corresponding high frequency IMF component is denoised by wavelet threshold. Finally, the processed high-frequency IMF component is superposed with the low-frequency IMF component, and the reconstructed signal is denoised signal. Experimental results show that this method integrates the advantages of EMD and wavelet threshold and can retain useful signals to the maximum extent. The impact peak and vibration characteristics are 0.003% and 0.135% of the original signal, respectively, and it reduces the noise of the original signal by 96%.


2002 ◽  
Vol 32 (9) ◽  
pp. 2652-2665 ◽  
Author(s):  
François Primeau

Abstract The ability of long-wave low-frequency basin modes to be resonantly excited depends on the efficiency with which energy fluxed onto the western boundary can be transmitted back to the eastern boundary. This efficiency is greatly reduced for basins in which the long Rossby wave basin-crossing time is latitude dependent. In the singular case where the basin-crossing time is independent of latitude, the amplitude of resonantly excited long-wave basin modes grows without bound except for the effects of friction. The speed of long Rossby waves is independent of latitude for quasigeostrophic dynamics, and the rectangular basin geometry often used for theoretical studies of the wind-driven ocean circulation is such a singular case for quasigeostrophic dynamics. For more realistic basin geometries, where only a fraction of the energy incident on the western boundary can be transmitted back to the eastern boundary, the modes have a finite decay rate that in the limit of weak friction is independent of the choice of frictional parameters. Explicit eigenmode computations for a basin geometry similar to the North Pacific but closed along the equator yield basin modes sufficiently weakly damped that they could be resonantly excited.


2020 ◽  
Author(s):  
Irene Polo ◽  
Jon Robson ◽  
Keith Haines ◽  
Christopher Thomas

Abstract. The AMOC circulation is driven both by direct wind stresses and by the buoyancy-driven formation of North Atlantic Deep Water over the Labrador and Nordic Seas. In many models low frequency density variability down the western boundary of the Atlantic basin is linked to changes in the buoyancy forcing over the Atlantic Sub-Polar Gyre (SPG) region, and this is found to explain part of the geostrophic AMOC variability at 26N. In this study, using different experiments with an OGCM, we develop statistical methods to identify characteristic vertical density profiles at 26N at the western and eastern boundaries which relate to the buoyancy-forced AMOC. We show that density anomalies due to anomalous buoyancy forcing over the SPG propagate equatorward along the western Atlantic boundary, through 26N, and then eastward along the equator, and poleward up the eastern Atlantic boundary. The timing of the density anomalies appearing at the eastern and western boundaries at 26N reveals a propagation speed leading to ~ 2–3 years lags between boundaries with maxima along deeper levels (2600–3000 m). Time record required to capture those vertical density profiles in the model is ~ 26 years. Results suggest that depth structure, and the lagged covariances between the boundaries at 26N, may both provide useful information for detecting density anomalies of high latitude origin in more complex models, and potentially in the observational RAPID array. However, time filtering will be required together with the continuation of the RAPID program in order to extend the time period.


2008 ◽  
Vol 21 (22) ◽  
pp. 6060-6069 ◽  
Author(s):  
Boris Dewitte ◽  
Sara Purca ◽  
Serena Illig ◽  
Lionel Renault ◽  
Benjamin S. Giese

Abstract Intraseasonal equatorial Kelvin wave activity (IEKW) at a low frequency in the Pacific is investigated using the Simple Ocean Data Assimilation (SODA) oceanic reanalyses. A vertical and horizontal mode decomposition of SODA variability allows estimation of the Kelvin wave amplitude according to the most energetic baroclinic modes. A wavenumber–frequency analysis is then performed on the time series to derive indices of modulation of the IEKW at various frequency bands. The results indicate that the IEKW activity undergoes a significant modulation that projects onto baroclinic modes and is not related in a straightforward manner to the low-frequency climate variability in the Pacific. Linear model experiments corroborate that part of the modulation of the IEKW is tightly linked to change in oceanic mean state rather than to the low-frequency change of atmospheric equatorial variability.


2013 ◽  
Vol 31 (4) ◽  
pp. 619 ◽  
Author(s):  
Luiz Eduardo Soares Ferreira ◽  
Milton José Porsani ◽  
Michelângelo G. Da Silva ◽  
Giovani Lopes Vasconcelos

ABSTRACT. Seismic processing aims to provide an adequate image of the subsurface geology. During seismic processing, the filtering of signals considered noise is of utmost importance. Among these signals is the surface rolling noise, better known as ground-roll. Ground-roll occurs mainly in land seismic data, masking reflections, and this roll has the following main features: high amplitude, low frequency and low speed. The attenuation of this noise is generally performed through so-called conventional methods using 1-D or 2-D frequency filters in the fk domain. This study uses the empirical mode decomposition (EMD) method for ground-roll attenuation. The EMD method was implemented in the programming language FORTRAN 90 and applied in the time and frequency domains. The application of this method to the processing of land seismic line 204-RL-247 in Tacutu Basin resulted in stacked seismic sections that were of similar or sometimes better quality compared with those obtained using the fk and high-pass filtering methods.Keywords: seismic processing, empirical mode decomposition, seismic data filtering, ground-roll. RESUMO. O processamento sísmico tem como principal objetivo fornecer uma imagem adequada da geologia da subsuperfície. Nas etapas do processamento sísmico a filtragem de sinais considerados como ruídos é de fundamental importância. Dentre esses ruídos encontramos o ruído de rolamento superficial, mais conhecido como ground-roll . O ground-roll ocorre principalmente em dados sísmicos terrestres, mascarando as reflexões e possui como principais características: alta amplitude, baixa frequência e baixa velocidade. A atenuação desse ruído é geralmente realizada através de métodos de filtragem ditos convencionais, que utilizam filtros de frequência 1D ou filtro 2D no domínio fk. Este trabalho utiliza o método de Decomposição em Modos Empíricos (DME) para a atenuação do ground-roll. O método DME foi implementado em linguagem de programação FORTRAN 90, e foi aplicado no domínio do tempo e da frequência. Sua aplicação no processamento da linha sísmica terrestre 204-RL-247 da Bacia do Tacutu gerou como resultados, seções sísmicas empilhadas de qualidade semelhante e por vezes melhor, quando comparadas as obtidas com os métodos de filtragem fk e passa-alta.Palavras-chave: processamento sísmico, decomposição em modos empíricos, filtragem dados sísmicos, atenuação do ground-roll.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1248
Author(s):  
Rafia Nishat Toma ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Condition monitoring is used to track the unavoidable phases of rolling element bearings in an induction motor (IM) to ensure reliable operation in domestic and industrial machinery. The convolutional neural network (CNN) has been used as an effective tool to recognize and classify multiple rolling bearing faults in recent times. Due to the nonlinear and nonstationary nature of vibration signals, it is quite difficult to achieve high classification accuracy when directly using the original signal as the input of a convolution neural network. To evaluate the fault characteristics, ensemble empirical mode decomposition (EEMD) is implemented to decompose the signal into multiple intrinsic mode functions (IMFs) in this work. Then, based on the kurtosis value, insignificant IMFs are filtered out and the original signal is reconstructed with the rest of the IMFs so that the reconstructed signal contains the fault characteristics. After that, the 1-D reconstructed vibration signal is converted into a 2-D image using a continuous wavelet transform with information from the damage frequency band. This also transfers the signal into a time-frequency domain and reduces the nonstationary effects of the vibration signal. Finally, the generated images of various fault conditions, which possess a discriminative pattern relative to the types of faults, are used to train an appropriate CNN model. Additionally, with the reconstructed signal, two different methods are used to create an image to compare with our proposed image creation approach. The vibration signal is collected from a self-designed testbed containing multiple bearings of different fault conditions. Two other conventional CNN architectures are compared with our proposed model. Based on the results obtained, it can be concluded that the image generated with fault signatures not only accurately classifies multiple faults with CNN but can also be considered as a reliable and stable method for the diagnosis of fault bearings.


2008 ◽  
Vol 38 (10) ◽  
pp. 2294-2307 ◽  
Author(s):  
Hristina G. Hristova ◽  
Joseph Pedlosky ◽  
Michael A. Spall

Abstract A linear stability analysis of a meridional boundary current on the beta plane is presented. The boundary current is idealized as a constant-speed meridional jet adjacent to a semi-infinite motionless far field. The far-field region can be situated either on the eastern or the western side of the jet, representing a western or an eastern boundary current, respectively. It is found that when unstable, the meridional boundary current generates temporally growing propagating waves that transport energy away from the locally unstable region toward the neutral far field. This is the so-called radiating instability and is found in both barotropic and two-layer baroclinic configurations. A second but important conclusion concerns the differences in the stability properties of eastern and western boundary currents. An eastern boundary current supports a greater number of radiating modes over a wider range of meridional wavenumbers. It generates waves with amplitude envelopes that decay slowly with distance from the current. The radiating waves tend to have an asymmetrical horizontal structure—they are much longer in the zonal direction than in the meridional, a consequence of which is that unstable eastern boundary currents, unlike western boundary currents, have the potential to act as a source of zonal jets for the interior of the ocean.


Author(s):  
Dehai Luo ◽  
Wenqi Zhang

AbstractThis paper examines the impact of the meridional and vertical structures of a preexisting upstream storm track (PUST) organized by preexisting synoptic-scale eddies on eddy-driven blocking in a nonlinear multi-scale interaction model. In this model, the blocking is assumed, based on observations, to be comprised of barotropic and first baroclinic modes, whereas the PUST consists of barotropic, first baroclinic and second baroclinic modes. It is found that the nonlinearity (dispersion) of blocking is intensified (weakened) with increasing amplitude of the first baroclinic mode of the blocking itself. The blocking tends to be long-lived in this case. The lifetime and strength of blocking are significantly influenced by the amplitude of the first baroclinic mode of blocking for given basic westerly winds (BWWs), whereas its spatial pattern and evolution are also affected by the meridional and vertical structures of the PUST.It is shown that the blocking mainly results from the transient eddy forcing induced by the barotropic and first baroclinic modes of PUST, whereas its second baroclinic mode contributes little to the transient eddy forcing. When the PUST shifts northward, eddy-driven blocking shows an asymmetric dipole structure with a strong anticyclone/weak cyclone in a uniform BWW, which induces northward-intensified westerly jet and storm track anomalies mainly on the north side of blocking. However, when the PUST has no meridional shift and is mainly located in the upper troposphere, a north-south anti-symmetric dipole blocking and an intensified split jet with maximum amplitude in the upper troposphere form easily for vertically varying BWWs without meridional shear.


Sign in / Sign up

Export Citation Format

Share Document