scholarly journals Propagation and dissipation of internal tides in the Oslofjord

Ocean Science ◽  
2012 ◽  
Vol 8 (4) ◽  
pp. 525-543 ◽  
Author(s):  
A. Staalstrøm ◽  
E. Aas ◽  
B. Liljebladh

Abstract. Observations of velocity, pressure, temperature and salinity in the inner Oslofjord have been analysed to provide new information about the relationships between internal tides generated by tidal currents across the Drøbak Sill and dissipation and diffusivity in the fjord. The most energetic vertical displacement of density surfaces inside the sill is associated with the first internal mode that has maximum amplitude around sill depth. The amplitude of the vertical displacement around sill depth correlates with the amplitude of the surface elevation, and, at a distance of 1 km inside the sill, the ratio between the amplitudes is 38, decreasing to 11 at a distance of 10 km. The greatest vertical displacements inside the sill, however, are found at 40 m depth. These latter internal waves are not associated with a first-mode internal tide, but are rather associated with higher internal modes controlled by stratification. The energy flux of the internal wave propagating from the Drøbak Sill into the inner fjord on the east side of the Håøya Island is estimated to vary in the range 155–430 kW. This is the same order of magnitude as the estimated barotropic energy loss over the Drøbak Sill (250 kW), but only 4–10% of the total barotropic flux. Approximately 40–70% of the internal energy flux is lost within a distance of 10 km from the sill. The mean diffusivity below 90 m depth in this area (~20 cm2 s−1) is more than four times higher than in the rest of the fjord (~5 cm2 s−1 or less).


2007 ◽  
Vol 37 (7) ◽  
pp. 1829-1848 ◽  
Author(s):  
Matthew H. Alford ◽  
Zhongxiang Zhao

Abstract Extending an earlier attempt to understand long-range propagation of the global internal-wave field, the energy E and horizontal energy flux F are computed for the two gravest baroclinic modes at 80 historical moorings around the globe. With bandpass filtering, the calculation is performed for the semidiurnal band (emphasizing M2 internal tides, generated by flow over sloping topography) and for the near-inertial band (emphasizing wind-generated waves near the Coriolis frequency). The time dependence of semidiurnal E and F is first examined at six locations north of the Hawaiian Ridge; E and F typically rise and fall together and can vary by over an order of magnitude at each site. This variability typically has a strong spring–neap component, in addition to longer time scales. The observed spring tides at sites northwest of the Hawaiian Ridge are coherent with barotropic forcing at the ridge, but lagged by times consistent with travel at the theoretical mode-1 group speed from the ridge. Phase computed from 14-day windows varies by approximately ±45° on monthly time scales, implying refraction by mesoscale currents and stratification. This refraction also causes the bulk of internal-tide energy flux to be undetectable by altimetry and other long-term harmonic-analysis techniques. As found previously, the mean flux in both frequency bands is O(1 kW m−1), sufficient to radiate a substantial fraction of energy far from each source. Tidal flux is generally away from regions of strong topography. Near-inertial flux is overwhelmingly equatorward, as required for waves generated at the inertial frequency on a β plane, and is winter-enhanced, consistent with storm generation. In a companion paper, the group velocity, ĉg ≡ FE−1, is examined for both frequency bands.



2012 ◽  
Vol 9 (1) ◽  
pp. 315-357
Author(s):  
A. Staalstrøm ◽  
E. Aas ◽  
B. Liljebladh

Abstract. Observations of velocity, pressure, temperature and salinity in the inner Oslofjord have been analysed. The data is used to provide new information about energy dissipation and mixing efficiency of internal tides generated by tidal current across the Drøbak Sill. The ratio between the observed amplitude of the internal wave in the pycnocline and the amplitude of the surface elevation is in the range 38 ± 6 at a distance of 1 km inside the sill and 11 ± 2 at 10 km. The energy flux of the internal wave propagating from the Drøbak Sill into the inner fjord is estimated to vary in the range 155–480 kW. This is the same order of magnitude as the estimated baroclinic energy loss (250 kW). Approximately 40–70% of this energy flux is dissipated within a distance of 7 km from the sill. The mixing efficiency is estimated to 0.09–0.11 based on energy density and group velocity, and 0.22–0.26 based on perturbation pressure and baroclinic velocity. These numbers are larger than earlier estimates. Only a fraction in the range 0.01–0.03 is transferred to work against buoyancy in the first basin within a distance of 7 km from the sill.



2006 ◽  
Vol 36 (6) ◽  
pp. 1123-1135 ◽  
Author(s):  
Jonathan D. Nash ◽  
Eric Kunze ◽  
Craig M. Lee ◽  
Thomas B. Sanford

Abstract Repeat transects of full-depth density and velocity are used to quantify generation and radiation of the semidiurnal internal tide from Kaena Ridge, Hawaii. A 20-km-long transect was sampled every 3 h using expendable current profilers and the absolute velocity profiler. Phase and amplitude of the baroclinic velocity, pressure, and vertical displacement were computed, as was the energy flux. Large barotropically induced isopycnal heaving and strong baroclinic energy-flux divergence are observed on the steep flanks of the ridge where upward and downward beams radiate off ridge. Directly above Kaena Ridge, strong kinetic energy density and weak net energy flux are argued to be a horizontally standing wave. The phasing of velocity and vertical displacements is consistent with this interpretation. Results compare favorably with the Merrifield and Holloway model.



2011 ◽  
Vol 41 (1) ◽  
pp. 186-204 ◽  
Author(s):  
Rob A. Hall ◽  
Glenn S. Carter

Abstract The M2 internal tide in Monterey Submarine Canyon is simulated using a modified version of the Princeton Ocean Model. Most of the internal tide energy entering the canyon is generated to the south, on Sur Slope and at the head of Carmel Canyon. The internal tide is topographically steered around the large canyon meanders. Depth-integrated baroclinic energy fluxes are up canyon and largest near the canyon axis, up to 1.5 kW m−1 at the mouth of the upper canyon and increasing to over 4 kW m−1 around Monterey and San Gregorio Meanders. The up-canyon energy flux is bottom intensified, suggesting that topographic focusing occurs. Net along-canyon energy flux decreases almost monotonically from 9 MW at the canyon mouth to 1 MW at Gooseneck Meander, implying that high levels of internal tide dissipation occur. The depth-integrated energy flux across the 200-m isobath is order 10 W m−1 along the majority of the canyon rim but increases by over an order of magnitude near the canyon head, where internal tide energy escapes onto the shelf. Reducing the size of the model domain to exclude remote areas of high barotropic-to-baroclinic energy conversion decreases the depth-integrated energy flux in the upper canyon by 20%. However, quantifying the role of remote internal tide generation sites is complicated by a pressure perturbation feedback between baroclinic energy flux and barotropic-to-baroclinic energy conversion.



2016 ◽  
Vol 46 (12) ◽  
pp. 3777-3788 ◽  
Author(s):  
Samuel M. Kelly

AbstractThe method of decomposing surface and internal tides determines the expression for internal tide energy, energy flux, and energy conversion. The de facto standard is to define surface tides as depth-averaged pressure and horizontal velocity and internal tides as the residuals. This decomposition, which is equivalent to projecting motion onto vertical modes that obey a rigid lid, is known to produce spurious energy conversion CS through movement of the free surface. Here, motion is instead projected onto modes that obey a linear, free-surface boundary condition. The free-surface modes are shown to obey a more complicated orthogonality condition than rigid-lid modes but are still straightforward to calculate numerically. The resulting decomposition (i) completely eliminates spurious energy conversion CS and (ii) leads to a more precise expression for topographic internal tide generation C, which now depends on horizontal gradients in the vertical structure of the surface tide. Numerical simulations and rough global estimates indicate that corrections to C are a maximum of a few percent. However, CS produces spurious energy flux divergences/convergences in the open ocean, which are the same order of magnitude [O(1–10) mW m−2] as open-ocean internal tide energy dissipation.



2021 ◽  
Vol 13 (13) ◽  
pp. 2530
Author(s):  
Xiaoyu Zhao ◽  
Zhenhua Xu ◽  
Ming Feng ◽  
Qun Li ◽  
Peiwen Zhang ◽  
...  

The mode-1 semidiurnal internal tides that emanate from multiple sources in the Sulu-Sulawesi Seas are investigated using multi-satellite altimeter data from 1993–2020. A practical plane-wave analysis method is used to separately extract multiple coherent internal tides, with the nontidal noise in the internal tide field further removed by a two-dimensional (2-D) spatial band-pass filter. The complex radiation pathways and interference patterns of the internal tides are revealed, showing a spatial contrast between the Sulu Sea and the Sulawesi Sea. The mode-1 semidiurnal internal tides in the Sulawesi Sea are effectively generated from both the Sulu and Sangihe Island chains, forming a spatially inhomogeneous interference pattern in the deep basin. A cylindrical internal tidal wave pattern from the Sibutu passage is confirmed for the first time, which modulates the interference pattern. The interference field can be reproduced by a line source model. A weak reflected internal tidal beam off the Sulawesi slope is revealed. In contrast, the Sulu Island chain is the sole energetic internal tide source in the Sulu Sea, thus featuring a relatively consistent wave and energy flux field in the basin. These energetic semidiurnal internal tidal beams contribute to the frequent occurrence of internal solitary waves (ISWs) in the study area. On the basis of the 28-year consistent satellite measurements, the northward semidiurnal tidal energy flux from the Sulu Island chain is 0.46 GW, about 25% of the southward energy flux. For M2, the altimetric estimated energy fluxes from the Sulu Island chain are about 80% of those from numerical simulations. The total semidiurnal tidal energy flux from the Sulu and Sangihe Island chains into the Sulawesi Sea is about 2.7 GW.



2021 ◽  
Author(s):  
Eugene Morozov ◽  
Dmitry Frey ◽  
Elizaveta Khimchenko

<p>Observations of tidal internal waves in the Bransfield Strait, Antarctica, are analyzed. The measurements were carried out for 14 days on a moored station equipped with five autonomous temperature and pressure sensors. The mooring was deployed on the slope of Nelson Island (South Shetland Islands archipelago) over a depth of 70 m at point 62°21ꞌ S, 58°49ꞌ W. Analysis is based on the fluctuations of isotherms.  Vertical displacements of temperature revealed that strong internal vertical oscillations up to 30–40 m are caused by the diurnal internal tide. Spectral analysis of vertical displacements of the 0.9°C isotherm showed a clear peak at a period of 24 h. It is known that the tides in the Bransfield Strait are mostly mixed diurnal and semidiurnal, but during the Antarctic summer, diurnal tide component may intensify. The velocity ellipses of the barotropic tidal currents were estimated using the global tidal model TPXO9.0. It was found that tidal ellipses rotate clockwise with a period of 24 h and anticlockwise with a period of 12 h. The waves are forced due to the interaction of the barotropic tide with the bottom topography. Diurnal internal tides do not develop at latitudes higher than 30º over flat bottom. The research was supported by RFBR grant 20-08-00246.</p>



Author(s):  
Callum J. Shakespeare ◽  
Brian K. Arbic ◽  
Andrew McC. Hogg

AbstractInternal waves generated at the seafloor propagate through the interior of the ocean, driving mixing where they break and dissipate. However, existing theories only describe these waves in two limiting cases. In one limit, the presence of an upper boundary permits bottom-generated waves to reflect from the ocean surface back to the seafloor, and all the energy flux is at discrete wavenumbers corresponding to resonant modes. In the other limit, waves are strongly dissipated such that they do not interact with the upper boundary and the energy flux is continuous over wavenumber. Here, a novel linear theory is developed for internal tides and lee waves that spans the parameter space in between these two limits. The linear theory is compared with a set of numerical simulations of internal tide and lee wave generation at realistic abyssal hill topography. The linear theory is able to replicate the spatially-averaged kinetic energy and dissipation of even highly non-linear wave fields in the numerical simulations via an appropriate choice of the linear dissipation operator, which represents turbulent wave breaking processes.



2021 ◽  
Author(s):  
Christos Papoutsellis ◽  
Matthieu Mercier ◽  
Nicolas Grisouard

<p>We model internal tides generated by the interaction of a barotropic tide with variable topography. For the barotropic part, an asymptotic solution valid over the variable topography is considered. The resulting non-uniform ambient flow is used as a prescribed barotropic forcing for the baroclinic equations (linearized, non-hydrostatic, Euler equations within the Boussinesq approximation).</p><p>The internal-tide generation problem is reformulated by means of a Coupled-Mode System (CMS) based on the decomposition of the baroclinic stream function in terms of vertical basis functions that consistently satisfy the bottom boundary condition. The proposed CMS is solved numerically with a finite difference scheme and shows good convergence properties, providing efficient calculations of internal tides due to 2D topographies of arbitrary height and slope. We consider several seamounts and shelf profiles and perform calculations for a wide range of heights and slopes. Our results are compared against existing analytical estimates on the far-field energy flux in order to examine the limit of validity of common simplifications (Weak Topography Approximation, Knife edge). For subcritical cases, local extrema of the energy flux exist for different heights. Non-radiating topographies are also identified for some profiles of large enough heights. For supercritical cases, the energy flux is in general an increasing function with increasing height and criticality, and does not compare well against analytical results for very steep idealized topographies. The effect of the adjusted barotropic tide in the energy flux and the local properties of the baroclinic field is investigated through comparisons with other semi-analytical methods based on a uniform barotropic tide (Green’s function approach).  A method for estimating the sea-surface signature of internal tides is also provided.</p>



2019 ◽  
Vol 49 (10) ◽  
pp. 2523-2533 ◽  
Author(s):  
Tyler D. Hennon ◽  
Matthew H. Alford ◽  
Zhongxiang Zhao

AbstractThough unresolved by Argo floats, internal waves still impart an aliased signal onto their profile measurements. Recent studies have yielded nearly global characterization of several constituents of the stationary internal tides. Using this new information in conjunction with thousands of floats, we quantify the influence of the stationary, mode-1 M2 and S2 internal tides on Argo-observed temperature. We calculate the in situ temperature anomaly observed by Argo floats (usually on the order of 0.1°C) and compare it to the anomaly expected from the stationary internal tides derived from altimetry. Globally, there is a small, positive correlation between the expected and in situ signals. There is a stronger relationship in regions with more intense internal waves, as well as at depths near the nominal mode-1 maximum. However, we are unable to use this relationship to remove significant variance from the in situ observations. This is somewhat surprising, given that the magnitude of the altimetry-derived signal is often on a similar scale to the in situ signal, and points toward a greater importance of the nonstationary internal tides than previously assumed.



Sign in / Sign up

Export Citation Format

Share Document