Global Contraction of Antarctic Bottom Water between the 1980s and 2000s*

2012 ◽  
Vol 25 (17) ◽  
pp. 5830-5844 ◽  
Author(s):  
Sarah G. Purkey ◽  
Gregory C. Johnson

Abstract A statistically significant reduction in Antarctic Bottom Water (AABW) volume is quantified between the 1980s and 2000s within the Southern Ocean and along the bottom-most, southern branches of the meridional overturning circulation (MOC). AABW has warmed globally during that time, contributing roughly 10% of the recent total ocean heat uptake. This warming implies a global-scale contraction of AABW. Rates of change in AABW-related circulation are estimated in most of the world’s deep-ocean basins by finding average rates of volume loss or gain below cold, deep potential temperature (θ) surfaces using all available repeated hydrographic sections. The Southern Ocean is losing water below θ = 0°C at a rate of −8.2 (±2.6) × 106 m3 s−1. This bottom water contraction causes a descent of potential isotherms throughout much of the water column until a near-surface recovery, apparently through a southward surge of Circumpolar Deep Water from the north. To the north, smaller losses of bottom waters are seen along three of the four main northward outflow routes of AABW. Volume and heat budgets below deep, cold θ surfaces within the Brazil and Pacific basins are not in steady state. The observed changes in volume and heat of the coldest waters within these basins could be accounted for by small decreases to the volume transport or small increases to θ of their inflows, or fractional increases in deep mixing. The budget calculations and global contraction pattern are consistent with a global-scale slowdown of the bottom, southern limb of the MOC.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Camille Hayatte Akhoudas ◽  
Jean-Baptiste Sallée ◽  
F. Alexander Haumann ◽  
Michael P. Meredith ◽  
Alberto Naveira Garabato ◽  
...  

AbstractThe Atlantic sector of the Southern Ocean is the world’s main production site of Antarctic Bottom Water, a water-mass that is ventilated at the ocean surface before sinking and entraining older water-masses—ultimately replenishing the abyssal global ocean. In recent decades, numerous attempts at estimating the rates of ventilation and overturning of Antarctic Bottom Water in this region have led to a strikingly broad range of results, with water transport-based calculations (8.4–9.7 Sv) yielding larger rates than tracer-based estimates (3.7–4.9 Sv). Here, we reconcile these conflicting views by integrating transport- and tracer-based estimates within a common analytical framework, in which bottom water formation processes are explicitly quantified. We show that the layer of Antarctic Bottom Water denser than 28.36 kg m$$^{-3}$$ - 3 $$\gamma _{n}$$ γ n is exported northward at a rate of 8.4 ± 0.7 Sv, composed of 4.5 ± 0.3 Sv of well-ventilated Dense Shelf Water, and 3.9 ± 0.5 Sv of old Circumpolar Deep Water entrained into cascading plumes. The majority, but not all, of the Dense Shelf Water (3.4 ± 0.6 Sv) is generated on the continental shelves of the Weddell Sea. Only 55% of AABW exported from the region is well ventilated and thus draws down heat and carbon into the deep ocean. Our findings unify traditionally contrasting views of Antarctic Bottom Water production in the Atlantic sector, and define a baseline, process-discerning target for its realistic representation in climate models.


2018 ◽  
Vol 31 (18) ◽  
pp. 7459-7479 ◽  
Author(s):  
Jia-Rui Shi ◽  
Shang-Ping Xie ◽  
Lynne D. Talley

Ocean uptake of anthropogenic heat over the past 15 years has mostly occurred in the Southern Ocean, based on Argo float observations. This agrees with historical simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), where the Southern Ocean (south of 30°S) accounts for 72% ± 28% of global heat uptake, while the contribution from the North Atlantic north of 30°N is only 6%. Aerosols preferentially cool the Northern Hemisphere, and the effect on surface heat flux over the subpolar North Atlantic opposes the greenhouse gas (GHG) effect in nearly equal magnitude. This heat uptake compensation is associated with weakening (strengthening) of the Atlantic meridional overturning circulation (AMOC) in response to GHG (aerosol) radiative forcing. Aerosols are projected to decline in the near future, reinforcing the greenhouse effect on the North Atlantic heat uptake. As a result, the Southern Ocean, which will continue to take up anthropogenic heat largely through the mean upwelling of water from depth, will be joined by increased relative contribution from the North Atlantic because of substantial AMOC slowdown in the twenty-first century. In the RCP8.5 scenario, the percentage contribution to global uptake is projected to decrease to 48% ± 8% in the Southern Ocean and increase to 26% ± 6% in the northern North Atlantic. Despite the large uncertainty in the magnitude of projected aerosol forcing, our results suggest that anthropogenic aerosols, given their geographic distributions and temporal trajectories, strongly influence the high-latitude ocean heat uptake and interhemispheric asymmetry through AMOC change.


2020 ◽  
Vol 6 (45) ◽  
pp. eabc0303
Author(s):  
Xiaofan Ma ◽  
Wei Liu ◽  
Robert J. Allen ◽  
Gang Huang ◽  
Xichen Li

The North Atlantic and Southern Ocean exhibit enhanced ocean heat uptake (OHU) during recent decades while their future OHU changes are subject to great uncertainty. Here, we show that regional OHU patterns in these two basins are highly dependent on the trajectories of aerosols and greenhouse gases (GHGs) in future scenarios. During the 21st century, North Atlantic and Southern Ocean OHU exhibit similarly positive trends under a business-as-usual scenario but respectively positive and negative trends under a mitigation scenario. The opposite centurial OHU trends in the Southern Ocean can be attributed partially to distinct GHG trajectories under the two scenarios while the common positive centurial OHU trends in the North Atlantic are mainly due to aerosol effects. Under both scenarios, projected decline of anthropogenic aerosols potentially induces a weakening of the Atlantic Meridional Overturning Circulation and a divergence of meridional oceanic heat transport, which leads to enhanced OHU in the subpolar North Atlantic.


Ocean Science ◽  
2014 ◽  
Vol 10 (6) ◽  
pp. 923-946 ◽  
Author(s):  
M. Azaneu ◽  
R. Kerr ◽  
M. M. Mata

Abstract. We analyzed the ability of the Estimating the Circulation and Climate of the Ocean – Phase II (ECCO2) reanalysis to represent the hydrographic properties and variability of Antarctic Bottom Water (AABW) in the Southern Ocean. We used a 20-year (1992–2011) observational database to perform comparisons of hydrographic properties and reanalysis output for the same time period. Four case studies based on current meter data and the AABW volume transport estimates previously reported in the literature were also evaluated. The opening and maintenance of an oceanic polynya in the Weddell Sea sector is observed after 2004 in the reanalysis product. Moreover, intense deep water production due to deep convection occurs, which leads to a scenario in which the Weddell Sea is flooded with AABW. For this reason, our analyses focused on the period that was identified as more reliable (1992–2004). The main Southern Ocean oceanographic features, as well as the characteristic shape of the regional potential temperature–salinity (θ–S) diagrams, are coincident with observations. However, the reanalysis output produces surface waters that are generally denser than observations due to the reproduction of waters that are generally saltier than expected, which probably resulted from the strong seasonality of sea ice concentrations. Bottom waters are warmer and less dense, while intermediate waters are statistically closest to the observations. The differences in bottom water properties are partially due to the inability of the reanalysis to properly reproduce the formation and export of dense waters from the shelf and the consequent absence of the densest AABW variety for most of the analyzed period. Despite differences in the absolute values, the upper AABW limit (γn ≥ 28.27 kg m−3) and AABW occupied area estimates are coincident with the observations in the World Ocean Circulation Experiment (WOCE) repeat sections SR2 and SR4. Moreover, the AABW volume export and current velocity variability are correlated with the observed time series in the most important region of dense water export (i.e., the Weddell Sea). Despite the consistency in terms of variability, the absolute volume transport and velocity estimates are underrepresented in all cases.


2014 ◽  
Vol 11 (2) ◽  
pp. 1023-1091 ◽  
Author(s):  
M. Azaneu ◽  
R. Kerr ◽  
M. M. Mata

Abstract. We analyzed the ability of the Estimating the Circulation and Climate of the Ocean – Phase II (ECCO2) reanalysis to represent the hydrographic properties and variability of the Antarctic Bottom Water (AABW) in the Southern Ocean. We used a twenty-year observational database to perform comparisons of hydrographic properties and reanalysis data for the same time period (1992–2011). In addition, we evaluated four case studies based on current meter data and the AABW volume transport estimates previously reported in the literature. The main Southern Ocean oceanographic features, as well as the characteristic shape of the regional potential temperature–salinity (θ–S) diagrams, are adequately represented by the reanalysis. However, the opening of an oceanic polynya in the Weddell Sea Sector, which has been clearly visible since 2005, contributed to an unrealistic representation of the hydrographic properties of the Southern Ocean primarily after 2004. In this sense, our analyses focused on the period that was identified as more reliable (1992–2004). In general, the reanalysis data showed surface waters that were warmer, saltier, and denser than observations, which may have resulted from the absence of Ice Shelf Water and from the overestimation of sea ice concentrations that limit oceanic heat loss during austral winters. Intermediate waters were generally colder, fresher, and denser than observations, whereas deep waters were warmer and less dense. These differences in deep water properties were partially a result of the inability to reproduce the densest AABW variety by reanalysis for most of the analyzed period and also because of the model's relatively coarse vertical resolution. Despite differences in absolute values, the upper AABW limit (γn ≥ 28.27 kg m−3) and AABW occupied area were well represented in the WOCE repeat sections SR2 and SR4 for the studied periods. In section WOCE SR3, however, the estimates from the differences were not as well correlated, and the AABW layer thickness was underrepresented. The case studies showed a good representation of the AABW volume export and current velocity variability in the most important region of dense water export (i.e., the Weddell Sea). The exception is the AABW volume transport near the Kerguelen Plateau, in which the rugged local bathymetry and the relatively coarse model resolution hampered a fair representation of the transport variability by the reanalysis. Despite the consistency in terms of variability, absolute volume transport, and velocity, estimates were underrepresented in all cases. Moreover, the reanalysis was capable of reproducing the general variability pattern and trends of the AABW hydrographic properties reported by previous studies. Therefore, the ECCO2 data from the 1992–2004 period was considered adequate for investigating the circulation of the AABW and variability of the hydrographic properties, whereas data from the latter period (2005–2011) must be given careful attention.


2020 ◽  
Author(s):  
Meir Abelson ◽  
Jonathan Erez

<p>A compilation of benthic δ<sup>18</sup>O from the whole Atlantic and the Southern Ocean (Atlantic sector), shows two major jumps in the interbasinal gradient of d<sup>18</sup>O (Δδ<sup>18</sup>O) during the Eocene and the Oligocene: One at ~40 Ma and the second concomitant with the isotopic event of the Eocene-Oligocene transition (EOT), ~33.7 Ma ago. From previously published circulation models, we show that the first Δδ<sup>18</sup>O jump reflects the thermal isolation of Antarctica associated with the proto-Antarctic circumpolar current (ACC). The second marks the onset of interhemispheric northern-sourced circulation cell, similar to the modern Atlantic meridional overturning circulation (AMOC). The onset of AMOC-like circulation probably slightly preceded (100-300 ky) the EOT, as we show by the high resolution profiles of δ<sup>18</sup>O and δ<sup>13</sup>C previously published from DSDP/ODP sites in the Southern Ocean and South Atlantic. We suggest that while the shallow proto-ACC supplied the energy for deep ocean convection in the Southern Hemisphere, the onset of the interhemispheric northern circulation cell was due to the significant EOT intensification of deepwater formation in the North Atlantic driven by the Nordic anti-estuarine circulation. This onset of the interhemispheric northern-sourced circulation cell could have prompted the EOT global cooling.</p>


2020 ◽  
Author(s):  
Daria Kuznetcova ◽  
Anna Mamadzhanian

<p>Atlantic Meridional Overturning Circulation (AMOC) contribute to long-term climate variability of Northern Hemisphere. The North Atlantic Ocean carries 25% of global heat transferred tropics to polar latitudes of the Northern Hemisphere (Srokosz, 2012). In the subpolar seas of the North Atlantic water goes down in few localized areas to deep convection, where all Atlantic deep water masses are formed. This process pumps a huge amount of CO2 to the deep ocean, which have strong consequence for global climate (Buckley and Marshall, 2016; Kuhlbrodt, 2007). The water comes back to the surface mainly in upwelling regions of the Southern Ocean (Toggweiler and Samuels 1998, Delworth and Zeng, 2008), as well as in the tropics due to vertical mixing.</p><p>In this study we try to link the long-term variability of the AMOC to it’s main driving mechanisms: the deep ocean convection in the Greenland, the Labrador and the Irminger seas, and to wind driven upwelling in the Southern Ocean.</p><p>As a reference for the AMOC intensity on the decadal and longer time scales, we use AMOC indexes from several studies (Caesar, 2018; Chen and Tung, 2018), which extend the time series back to the 1950s. The intensity of deep convection (IC) over the same time period is computed using convection index (Bashmacnikov et al., 2019). Wind-driving upwelling in the Southern Ocean is computed through evaluation of the divergence of Ekman fluxes (ED), using the wind velocity from atmospheric reanalysis (ERA 40 1957-1979 and ERA-Interim 1980-2016).</p><p>To estimate contribution of each of the forcing factors to the temporal variability of the AMOC, were used cross-correlation and regression analyses with varying time lags. The biggest cross-correlation coefficient was found with the IC in the Greenland Sea, the negative lags indicate that it is the AMOC, which affects the variability of convection intensity. The second largest cross-correlation coefficient was found with the IC in the Labrador Sea (0.7) with the lag of 13 years. The maximum cross-correlation with the IC in the Irminger Sea was 0.6 on a narrow interval of the time lags. The ED in Southern ocean demonstrate a significant correlation with the AMOC, with the correlation coefficient of 0.5 at the time lag of 15 years.</p><p>The contributions of each of the control mechanisms to temporal variability of the AMOC were investigated by the regression analysis for the time lags at which the maximum cross-correlations of each of the parameters are obtained. As a result the maximum regression coefficient was obtained for the IC in the Irminger Sea (0.65), the second one for the ED (0.35) using the time lags of 9 and 25 years, respectively. The regression coefficient for the IC in the Labrador Sea did not exceed 0.2 for all tested time lags. The physical mechanism, connecting the variability of the AMOC intensity to these two control mechanisms is a subject of our further research.</p><p>The work was supported by a grant from the Russian science Foundation (project No. 17-17-01151)</p>


Author(s):  
N. A. Diansky ◽  
V. A. Bagatinsky

The meridional structure of climatic trends and anomalies of potential temperature and salinity in the North Atlantic waters in different periods of the Atlantic Multidecadal Oscillation (AMO) in 19482017 are studied based on the EN4 and WOA2013 objective analyses data. An analysis of these different data sets allowed us to reveal almost identical patterns of variability of the thermohaline fields of the North Atlantic, which increases the reliability of the results. Long-term temperature and salinity trends simulated over the period 19482017 show that warming and salinization of water occur in the upper ~1 km layer of the North Atlantic. On the contrary, cooling and freshening of deep waters are observed, which is associated with the melting of the Greenland ice sheet, transport of fresher waters from the Arctic Ocean, and deepening of these cold and fresher waters into the deeper layers. Composite analysis of the zonally averaged temperature and salinity anomalies of the North Atlantic waters after removing the trends showed that in the warm AMO periods warming and salinization of waters are observed in the upper 1-km layer of the North Atlantic when compared to the cold periods based both on the EN4 and WOA2013 data. Below the 1-km layer, significant regions of cooling and freshening are observed; this distribution is more pronounced in the EN4 data. Analysis of the dynamics of zonally averaged temperature and salinity anomalies in the successive periods associated with the temporal variability of the AMO index revealed that these anomalies propagate along the zonally averaged meridional thermohaline circulation. To show this using the Institute of Numerical Mathematics Ocean Model (INMOM), the stream function of the Atlantic Meridional Overturning Circulation (AMOC) was simulated. It is shown that positive and negative anomalies of both temperature and salinity circulate along the water motion in the AMOC around its core, descending down into the deep ocean layers approximately at 60 N and ascending to the surface at 25 N, replacing each other with a period of about 60 years. It can be assumed that due to this process both the warm and cold phases of the AMO are formed.


2013 ◽  
Vol 26 (16) ◽  
pp. 6105-6122 ◽  
Author(s):  
Sarah G. Purkey ◽  
Gregory C. Johnson

Abstract Freshening and warming of Antarctic Bottom Water (AABW) between the 1980s and 2000s are quantified, assessing the relative contributions of water-mass changes and isotherm heave. The analysis uses highly accurate, full-depth, ship-based, conductivity–temperature–depth measurements taken along repeated oceanographic sections around the Southern Ocean. Fresher varieties of AABW are present within the South Pacific and south Indian Oceans in the 2000s compared to the 1990s, with the strongest freshening in the newest waters adjacent to the Antarctic continental slope and rise indicating a recent shift in the salinity of AABW produced in this region. Bottom waters in the Weddell Sea exhibit significantly less water-mass freshening than those in the other two southern basins. However, a decrease in the volume of the coldest, deepest waters is observed throughout the entire Southern Ocean. This isotherm heave causes a salinification and warming on isobaths from the bottom up to the shallow potential temperature maximum. The water-mass freshening of AABW in the Indian and Pacific Ocean sectors is equivalent to a freshwater flux of 73 ± 26 Gt yr−1, roughly half of the estimated recent mass loss of the West Antarctic Ice Sheet. Isotherm heave integrated below 2000 m and south of 30°S equates to a net heat uptake of 34 ± 14 TW of excess energy entering the deep ocean from deep volume loss of AABW and 0.37 ± 0.15 mm yr−1 of sea level rise from associated thermal expansion.


2015 ◽  
Vol 28 (23) ◽  
pp. 9250-9257 ◽  
Author(s):  
M. Jochum ◽  
Carsten Eden

Abstract Coupled GCM simulations are analyzed to quantify the dynamic effect of Southern Ocean (SO) winds on transports in the ocean. It is found that the closure for skew diffusivity in the non-eddy-resolving ocean model does not allow for a realistic eddy saturation of the zonal transports in the SO in response to the wind changes and that eddy compensation of the meridional transports in the SO is underestimated too. Despite this underestimated eddy compensation in the SO, however, and in contrast to previous suggestions, the Atlantic meridional overturning circulation (AMOC) strength is almost insensitive to SO winds. In the limit of weak SO winds the AMOC waters upwell not in the SO but rather in the tropical Indo-Pacific. Through their effect on sea ice, weaker SO winds also lead to less production of Antarctic Bottom Water and therefore a deeper and stronger AMOC.


Sign in / Sign up

Export Citation Format

Share Document