scholarly journals The assessment of temperature and salinity sampling strategies in the Mediterranean Sea: idealized and real cases

2006 ◽  
Vol 3 (3) ◽  
pp. 127-163 ◽  
Author(s):  
F. Raicich

Abstract. Temperature and salinity sampling strategies are studied and compared by means of the Observing System Simulation Experiment technique in order to assess their usefulness for data assimilation in the framework of the Mediterranean Forecasting System (MFS). Their impact in a Mediterranean General Circulation Model is quantified in numerical twin experiments via bivariate data assimilation of temperature and salinity profiles in summer and winter conditions, using the optimal interpolation algorithm implemented in the System for Ocean Forecasting and Analysis. The data impact is quantified by the error reduction in the assimilation run relative to the free run. The sampling strategies studied here include various combinations of temperature and salinity profiles collected along Volunteer Observing Ship (VOS) tracks, by Mediterranean Multi-sensor Moored Arrays (M3A), a Glider and ARGO floating profilers. Idealized sampling strategies involving VOS data allow to recognize the impact of individual tracks. As a result, the most effective tracks are those crossing regions characterized by high mesoscale variability and the presence of frontal structures between water masses. Sampling strategies adopted in summer-autumn 2004 and winter 2005 are studied to assess the impact of VOS and ARGO data in real conditions. The combination of all available data allows to achieve up to 30% error reductions. ARGO data produce a small impact when alone, but represent the only continuous coverage of the basin and are useful as a complement to VOS data sets. Localized data sets, as those obtained by M3As and the Glider seem to have an almost negligible impact in the basin-scale assessment, and are expected to be more effective at regional scale.

Ocean Science ◽  
2006 ◽  
Vol 2 (2) ◽  
pp. 97-112 ◽  
Author(s):  
F. Raicich

Abstract. Temperature and salinity sampling strategies are studied and compared by means of the Observing System Simulation Experiment technique in order to assess their usefulness for data assimilation in the framework of the Mediterranean Forecasting System. Their impact in a Mediterranean General Circulation Model is quantified in numerical twin experiments via bivariate data assimilation of temperature and salinity profiles in summer and winter conditions, using the optimal interpolation algorithm implemented in the System for Ocean Forecasting and Analysis. The data impact is quantified by the error reduction in the assimilation run relative to the free run. The sampling strategies studied here include various combinations of temperature and salinity profiles collected along Volunteer Observing Ship (VOS) tracks, by Mediterranean Multi-sensor Moored Arrays (M3A), a Glider and ARGO floating profilers. Idealized sampling strategies involving VOS data allow to recognize the impact of individual tracks. As a result, the most effective tracks are those crossing regions characterized by high mesoscale variability and the presence of frontal structures between water masses. Sampling strategies adopted in summer–autumn 2004 and winter 2005 are studied to assess the impact of VOS and ARGO data in real conditions. The combination of all available data allows to achieve up to 30% error reductions. ARGO data produce a small impact when alone, but represent the only continuous coverage of the basin and are useful as a complement to VOS data sets. Localized data sets, as those obtained by M3As and the Glider, seem to have an almost negligible impact in the basin-scale assessment, and are expected to be more effective at regional scale.


Ocean Science ◽  
2008 ◽  
Vol 4 (1) ◽  
pp. 1-14 ◽  
Author(s):  
M. Tonani ◽  
N. Pinardi ◽  
S. Dobricic ◽  
I. Pujol ◽  
C. Fratianni

Abstract. This study describes a new model implementation for the Mediterranean Sea with what is currently the highest vertical resolution over the Mediterranean basin. The resolution is of 1/16°×1/16° in the horizontal and has 72 unevenly spaced vertical levels. This model has been developed in the frame of the EU-MFSTEP project and is the operational forecast model currently used at the basin scale. The model considers an implicit free surface and this characteristic enhances the model's capability to simulate the sea surface height variability and the net transport at the Strait of Gibraltar. In this study we show the calibration/validation experiments performed before and after the model was used for forecasting. The first experiment consists of a six-year simulation forced by a perpetual year forcing, and the other experiment is a simulation from January 1997 to December 2004, forcing the model with 6-h atmospheric forcing fields from ECMWF. The model Sea Level Anomaly has been compared for the first time with satellite SLA and with ARGO data to provide evidence of the quality of the simulation. The results show that this model is capable of reproducing most of the variability of the general circulation in the Mediterranean Sea. However, some basic model inadequacies stand out and should be corrected in the near future.


2007 ◽  
Vol 4 (1) ◽  
pp. 213-244 ◽  
Author(s):  
M. Tonani ◽  
N. Pinardi ◽  
S. Dobricic ◽  
I. Pujol ◽  
C. Fratianni

Abstract. This study describes a new model implementation for the Mediterranean Sea which has the presently highest vertical resolution over the Mediterranean basin. The resolution is of 1/16°×1/16° in horizontal and 71 unevenly spaced vertical levels. This model has been developed in the frame of the EU-MFSTEP project and it is the operational forecast model presently used at the basin scale. For the first time in the Mediterranean, the model considers an implicit free surface and this characteristics enhances the model capability to simulate the sea surface height variability. In this study we show the calibration/validation experiments done before and after the model has been used for forecasting. The first experiment consist of six years of a simulation forced by a perpetual year forcing and the other experiment is a simulation from January 1997 to December 2004, forcing the model with 6 h atmospheric forcing fields from ECMWF. For the first time the model Sea Level Anomaly is compared with SLA and with ARGO data to provide evidence of the quality of the simulation. The results show that this model is capable to reproduce most of the variability of the general circulation in the Mediterranean Sea even if some basic model inadequacies stand out and should be corrected in the near future.


2020 ◽  
Author(s):  
siva reddy sanikommu ◽  
Habib Toye ◽  
Peng Zhan ◽  
Sabique Langodan ◽  
George Krokos ◽  
...  

<p>The Ensemble Adjustment Kalman Filter of the Data Assimilation Research Testbed is implemented to assimilate observations of satellite sea surface temperature, altimeter sea surface height and in-situocean temperature and salinity profiles into an eddy-resolving 4km-Massachusetts Institute of Technology general circulation model (MITgcm) of the Red Sea. We investigate the impact of three different assimilation strategies (1) <em>Iexp</em>– inflates filter error covariance by 10%, (2) <em>IAexp</em>– adds ensemble of atmospheric forcing to Iexp, and (3) <em>IAPexp</em>– adds perturbed model physics toIAexp. The assimilation experiments are run for one year, starting from the same initial ensemble on 1<sup>st</sup>January, 2011 and the data are assimilated every three days.</p><p>Results demonstrate that the <em>Iexp</em> mainly improved the model outputs with respect to assimilation-free MITgcm run in the first few months, before showing signs of dynamical imbalances in the ocean estimates, particularly in the data-sparse subsurface layers. The <em>IAexp</em> yielded substantial improvements throughout the assimilation period with almost no signs of imbalances, including the subsurface layers. It further well preserved the model mesoscales features resulting in an improved forecasts for eddies, both in terms of intensity and location. Perturbing model physics in <em>IAPexp</em> slightly improved the forecast statistics. It further increased smoothness in the ocean forecasts and improved the placement of basin-scale eddies, but caused loss of some high-resolution features. Increasing hydrographic coverage helps recovering the losses and yields more improvements in <em>IAPexp</em> compared to <em>IAexp</em>. Switching off inflation in <em>IAexp</em> and <em>IAPexp</em> leads to further improvements, especially in the subsurface layers.</p>


2019 ◽  
Vol 32 (4) ◽  
pp. 997-1024 ◽  
Author(s):  
Terence J. O’Kane ◽  
Paul A. Sandery ◽  
Didier P. Monselesan ◽  
Pavel Sakov ◽  
Matthew A. Chamberlain ◽  
...  

We develop and compare variants of coupled data assimilation (DA) systems based on ensemble optimal interpolation (EnOI) and ensemble transform Kalman filter (ETKF) methods. The assimilation system is first tested on a small paradigm model of the coupled tropical–extratropical climate system, then implemented for a coupled general circulation model (GCM). Strongly coupled DA was employed specifically to assess the impact of assimilating ocean observations [sea surface temperature (SST), sea surface height (SSH), and sea surface salinity (SSS), Argo, XBT, CTD, moorings] on the atmospheric state analysis update via the cross-domain error covariances from the coupled-model background ensemble. We examine the relationship between ensemble spread, analysis increments, and forecast skill in multiyear ENSO prediction experiments with a particular focus on the atmospheric response to tropical ocean perturbations. Initial forecast perturbations generated from bred vectors (BVs) project onto disturbances at and below the thermocline with similar structures to ETKF perturbations. BV error growth leads ENSO SST phasing by 6 months whereupon the dominant mechanism communicating tropical ocean variability to the extratropical atmosphere is via tropical convection modulating the Hadley circulation. We find that bred vectors specific to tropical Pacific thermocline variability were the most effective choices for ensemble initialization and ENSO forecasting.


2003 ◽  
Vol 21 (1) ◽  
pp. 151-165 ◽  
Author(s):  
F. Raicich ◽  
A. Rampazzo

Abstract. For the first time in the Mediterranean Sea various temperature sampling strategies are studied and compared to each other by means of the Observing System Simulation Experiment technique. Their usefulness in the framework of the Mediterranean Forecasting System (MFS) is assessed by quantifying their impact in a Mediterranean General Circulation Model in numerical twin experiments via univariate data assimilation of temperature profiles in summer and winter conditions. Data assimilation is performed by means of the optimal interpolation algorithm implemented in the SOFA (System for Ocean Forecasting and Analysis) code. The sampling strategies studied here include various combinations of eXpendable BathyThermograph (XBT) profiles collected along Volunteer Observing Ship (VOS) tracks, Airborne XBTs (AXBTs) and sea surface temperatures. The actual sampling strategy adopted in the MFS Pilot Project during the Targeted Operational Period (TOP, winter-spring 2000) is also studied. The data impact is quantified by the error reduction relative to the free run. The most effective sampling strategies determine 25–40% error reduction, depending on the season, the geographic area and the depth range. A qualitative relationship can be recognized in terms of the spread of information from the data positions, between basin circulation features and spatial patterns of the error reduction fields, as a function of different spatial and seasonal characteristics of the dynamics. The largest error reductions are observed when samplings are characterized by extensive spatial coverages, as in the cases of AXBTs and the combination of XBTs and surface temperatures. The sampling strategy adopted during the TOP is characterized by little impact, as a consequence of a sampling frequency that is too low. Key words. Oceanography: general (marginal and semi-enclosed seas; numerical modelling)


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Xuefeng Zhang ◽  
Chaohui Sun ◽  
Chang Liu ◽  
Lianxin Zhang ◽  
Caixia Shao ◽  
...  

Observing System Simulation Experiments (OSSEs) have been conducted to evaluate the effect of Argo data assimilation on ocean reanalysis in the Pacific region. The “truth” is obtained from a 5-year model integration from 2003 to 2007 based on the MIT general circulation model with the truly varying atmospheric forcing. The “observations” are the projections of the truth onto the observational network including ocean station data, CTD, and various BTs and Argo, by adding white noise to simulate observational errors. The data assimilation method employed is a sequential three-dimensional variational (3D-Var) scheme within a multigrid framework. Results show the interannual variability of temperature, salinity, and current fields can be reconstructed fairly well. The spread of temperature anomalies in the tropical Pacific region is also able to be reflected accurately when Argo data is assimilated, which may provide a reliable initial field for the forecast of temperature and currents for the subsurface in the tropical Pacific region. The adjustment of salinity by using T-S relationship is vital in the tropical Pacific region. However, the adjustment of salinity is almost meaningless in the northwest Pacific if Argo data is included during the reanalysis.


2002 ◽  
Vol 32 (9) ◽  
pp. 2509-2519 ◽  
Author(s):  
Gerrit Burgers ◽  
Magdalena A. Balmaseda ◽  
Femke C. Vossepoel ◽  
Geert Jan van Oldenborgh ◽  
Peter Jan van Leeuwen

Abstract The question is addressed whether using unbalanced updates in ocean-data assimilation schemes for seasonal forecasting systems can result in a relatively poor simulation of zonal currents. An assimilation scheme, where temperature observations are used for updating only the density field, is compared to a scheme where updates of density field and zonal velocities are related by geostrophic balance. This is done for an equatorial linear shallow-water model. It is found that equatorial zonal velocities can be detoriated if velocity is not updated in the assimilation procedure. Adding balanced updates to the zonal velocity is shown to be a simple remedy for the shallow-water model. Next, optimal interpolation (OI) schemes with balanced updates of the zonal velocity are implemented in two ocean general circulation models. First tests indicate a beneficial impact on equatorial upper-ocean zonal currents.


2018 ◽  
Author(s):  
Benoît Tranchant ◽  
Elisabeth Remy ◽  
Eric Greiner ◽  
Olivier Legalloudec

Abstract. Monitoring Sea Surface Salinity (SSS) is important for understanding and forecasting the ocean circulation. It is even crucial in the context of the acceleration of the water cycle. Until recently, SSS was one of the less observed essential ocean variables. Only sparse in situ observations, most often closer to 5 meters deep than the surface, were available to estimate the SSS. The recent satellite missions of ESA's SMOS, NASA's Aquarius, and now SMAP have made possible for the first time to measure SSS from space. The SSS drivers can be quite different than the temperature ones. The model SSS can suffer from significant errors coming not only from the ocean dynamical model but also the atmospheric precipitation and evaporation as well as ice melting and river runoff. Satellite SSS can bring a valuable additional constraint to control the model salinity. In the framework of the SMOS Nino 2015 ESA project (https://www.godae-oceanview.org/projects/smos-nino15/), the impact of satellite SSS data assimilation is assessed with the Met Office and Mercator Ocean global ocean analysis and forecasting systems with a focus on the Tropical Pacific region. This article presents the analysis of an Observing System Experiment (OSE) conducted with the 1/4° resolution Mercator Ocean analysis and forecasting system. SSS data assimilation constrains the model SSS to be closer to the observations in a coherent way with the other data sets already routinely assimilated in an operational context. Globally, the SMOS SSS assimilation has a positive impact in salinity over the top 30 meters. Comparisons to independent data sets show a small but positive impact. The sea surface height (SSH) has also been impacted by implying a reinforcement of TIWs during the El-Niño 2015/16 event. Finally, this study helped us to progress in the understanding of the biases and errors that can degrade the SMOS SSS performance.


Radiocarbon ◽  
2015 ◽  
Vol 57 (2) ◽  
pp. 207-216 ◽  
Author(s):  
Elisabetta Boaretto

The establishment of an absolute chronology for the Late Bronze and Iron Ages in the southern Levant would make it possible to use changes in material culture in order to study the impact of trade, dissemination of knowledge, and the impact of climate on historical processes. To achieve this, a detailed absolute chronology is needed for individual sites and on a regional scale with a resolution that can differentiate events within a century. To realize this challenging goal, only samples from well-established primary contexts ought to be studied. Such primary contexts (with “dating assemblages”) can be identified by combining macroscopic with microscopic observations. Chronological studies at the sites of Qubur el-Walaydah, Tel es-Safi, and in particular, Megiddo, demonstrate that high-resolution dating can be achieved, with very few outliers in the data sets. The major limitation on applying this approach is the fact that we are currently constrained to dating short-lived samples (charred seeds and olive pits) and collagen from bones. Thus, an immediate goal of radiocarbon research is to develop the ability to date other short-lived materials, such as organic material occluded in siliceous plant phytoliths, wood ash, and possibly organic residues preserved in pottery vessels.


Sign in / Sign up

Export Citation Format

Share Document