scholarly journals Impact of Atmospheric and Model Physics Perturbations On a High-Resolution Ensemble Data Assimilation System of the Red Sea

Author(s):  
siva reddy sanikommu ◽  
Habib Toye ◽  
Peng Zhan ◽  
Sabique Langodan ◽  
George Krokos ◽  
...  

<p>The Ensemble Adjustment Kalman Filter of the Data Assimilation Research Testbed is implemented to assimilate observations of satellite sea surface temperature, altimeter sea surface height and in-situocean temperature and salinity profiles into an eddy-resolving 4km-Massachusetts Institute of Technology general circulation model (MITgcm) of the Red Sea. We investigate the impact of three different assimilation strategies (1) <em>Iexp</em>– inflates filter error covariance by 10%, (2) <em>IAexp</em>– adds ensemble of atmospheric forcing to Iexp, and (3) <em>IAPexp</em>– adds perturbed model physics toIAexp. The assimilation experiments are run for one year, starting from the same initial ensemble on 1<sup>st</sup>January, 2011 and the data are assimilated every three days.</p><p>Results demonstrate that the <em>Iexp</em> mainly improved the model outputs with respect to assimilation-free MITgcm run in the first few months, before showing signs of dynamical imbalances in the ocean estimates, particularly in the data-sparse subsurface layers. The <em>IAexp</em> yielded substantial improvements throughout the assimilation period with almost no signs of imbalances, including the subsurface layers. It further well preserved the model mesoscales features resulting in an improved forecasts for eddies, both in terms of intensity and location. Perturbing model physics in <em>IAPexp</em> slightly improved the forecast statistics. It further increased smoothness in the ocean forecasts and improved the placement of basin-scale eddies, but caused loss of some high-resolution features. Increasing hydrographic coverage helps recovering the losses and yields more improvements in <em>IAPexp</em> compared to <em>IAexp</em>. Switching off inflation in <em>IAexp</em> and <em>IAPexp</em> leads to further improvements, especially in the subsurface layers.</p>

2019 ◽  
Vol 32 (4) ◽  
pp. 997-1024 ◽  
Author(s):  
Terence J. O’Kane ◽  
Paul A. Sandery ◽  
Didier P. Monselesan ◽  
Pavel Sakov ◽  
Matthew A. Chamberlain ◽  
...  

We develop and compare variants of coupled data assimilation (DA) systems based on ensemble optimal interpolation (EnOI) and ensemble transform Kalman filter (ETKF) methods. The assimilation system is first tested on a small paradigm model of the coupled tropical–extratropical climate system, then implemented for a coupled general circulation model (GCM). Strongly coupled DA was employed specifically to assess the impact of assimilating ocean observations [sea surface temperature (SST), sea surface height (SSH), and sea surface salinity (SSS), Argo, XBT, CTD, moorings] on the atmospheric state analysis update via the cross-domain error covariances from the coupled-model background ensemble. We examine the relationship between ensemble spread, analysis increments, and forecast skill in multiyear ENSO prediction experiments with a particular focus on the atmospheric response to tropical ocean perturbations. Initial forecast perturbations generated from bred vectors (BVs) project onto disturbances at and below the thermocline with similar structures to ETKF perturbations. BV error growth leads ENSO SST phasing by 6 months whereupon the dominant mechanism communicating tropical ocean variability to the extratropical atmosphere is via tropical convection modulating the Hadley circulation. We find that bred vectors specific to tropical Pacific thermocline variability were the most effective choices for ensemble initialization and ENSO forecasting.


2021 ◽  
Author(s):  
Leonardo Lima ◽  
Stefania Angela Ciliberti ◽  
Ali Aydogdu ◽  
Romain Escudier ◽  
Simona Masina ◽  
...  

<p>Ocean reanalyses are becoming increasingly important to reconstruct and provide an overview of the ocean state from the past to the present-day. These products require advanced scientific methods and techniques to produce a more accurate ocean representation. In the scope of the Copernicus Marine Environment Monitoring Service (CMEMS), a new Black Sea (BS) reanalysis, BS-REA (BSE3R1 system), has been produced by using an advanced variational data assimilation method to combine the best available observations with a state-of-the-art ocean general circulation model. The hydrodynamical model is based on Nucleus for European Modeling of the Ocean (NEMO, v3.6), implemented for the BS domain with horizontal resolution of 1/27° x 1/36°, and 31 unevenly distributed vertical levels. NEMO is forced by atmospheric surface fluxes computed via bulk formulation and forced by ECMWF ERA5 atmospheric reanalysis product. At the surface, the model temperature is relaxed to daily objective analysis fields of sea surface temperature from CMEMS SST TAC. The exchange with Mediterranean Sea is simulated through relaxation of the temperature and salinity near Bosporus toward a monthly climatology computed from a high-resolution multi-year simulation, and the barotropic Bosporus Strait transport is corrected to balance the variations of the freshwater flux and the sea surface height measured by multi-satellite altimetry observations. A 3D-Var ocean data assimilation scheme (OceanVar) is used to assimilate sea level anomaly along-track observations from CMEMS SL TAC and available in situ vertical profiles of temperature and salinity from both SeaDataNet and CMEMS INS TAC products. Comparisons against the previous Black Sea reanalysis (BSE2R2 system) show important improvements for temperature and salinity, such that errors have significantly decreased (about 50%). Temperature fields present a continuous warming in the layer between 25-150 m, within which there is the presence of the Black Sea Cold Intermediate Layer (CIL). SST exhibits a positive bias and relatively higher root mean square error (RMSE) values are present in the summer season. Spatial maps of sea level anomaly reveal the largest RMSE close to the shelf areas, which are related to the mesoscale activity along the Rim current. The BS-REA catalogue includes daily and monthly means for 3D temperature, salinity, and currents and 2D sea surface height, bottom temperature, mixed layer fields, from Jan 1993 to Dec 2019.  The BSE3R1 system has produced very accurate estimates which makes it very suitable for assessing more realistic climate trends and indicators for important ocean properties.</p>


2020 ◽  
Vol 24 (1) ◽  
pp. 269-291 ◽  
Author(s):  
Alfonso Senatore ◽  
Luca Furnari ◽  
Giuseppe Mendicino

Abstract. Operational meteo-hydrological forecasting chains are affected by many sources of uncertainty. In coastal areas characterized by complex topography, with several medium-to-small size catchments, quantitative precipitation forecast becomes even more challenging due to the interaction of intense air–sea exchanges with coastal orography. For such areas, which are quite common in the Mediterranean Basin, improved representation of sea surface temperature (SST) space–time patterns can be particularly important. The paper focuses on the relative impact of different resolutions of SST representation on regional operational forecasting chains (up to river discharge estimates) over coastal Mediterranean catchments, with respect to two other fundamental options while setting up the system, i.e. the choice of the forcing general circulation model (GCM) and the possible use of a three-dimensional variational assimilation (3D-Var) scheme. Two different kinds of severe hydro-meteorological events that affected the Calabria region (southern Italy) in 2015 are analysed using the WRF-Hydro atmosphere–hydrology modelling system in its uncoupled version. Both of the events are modelled using the 0.25∘ resolution global forecasting system (GFS) and the 16 km resolution integrated forecasting system (IFS) initial and lateral atmospheric boundary conditions, which are from the European Centre for Medium-Range Weather Forecasts (ECMWF), applying the WRF mesoscale model for the dynamical downscaling. For the IFS-driven forecasts, the effects of the 3D-Var scheme are also analysed. Finally, native initial and lower boundary SST data are replaced with data from the Medspiration project by Institut Français de Recherche pour L'Exploitation de la Mer (IFREMER)/Centre European Remote Sensing d'Archivage et de Traitement (CERSAT), which have a 24 h time resolution and a 2.2 km spatial resolution. Precipitation estimates are compared with both ground-based and radar data, as well as discharge estimates with stream gauging stations' data. Overall, the experiments highlight that the added value of high-resolution SST representation can be hidden by other more relevant sources of uncertainty, especially the choice of the general circulation model providing the boundary conditions. Nevertheless, in most cases, high-resolution SST fields show a non-negligible impact on the simulation of the atmospheric boundary layer processes, modifying flow dynamics and/or the amount of precipitated water; thus, this emphasizes the fact that uncertainty in SST representation should be duly taken into account in operational forecasting in coastal areas.


Ocean Science ◽  
2006 ◽  
Vol 2 (2) ◽  
pp. 97-112 ◽  
Author(s):  
F. Raicich

Abstract. Temperature and salinity sampling strategies are studied and compared by means of the Observing System Simulation Experiment technique in order to assess their usefulness for data assimilation in the framework of the Mediterranean Forecasting System. Their impact in a Mediterranean General Circulation Model is quantified in numerical twin experiments via bivariate data assimilation of temperature and salinity profiles in summer and winter conditions, using the optimal interpolation algorithm implemented in the System for Ocean Forecasting and Analysis. The data impact is quantified by the error reduction in the assimilation run relative to the free run. The sampling strategies studied here include various combinations of temperature and salinity profiles collected along Volunteer Observing Ship (VOS) tracks, by Mediterranean Multi-sensor Moored Arrays (M3A), a Glider and ARGO floating profilers. Idealized sampling strategies involving VOS data allow to recognize the impact of individual tracks. As a result, the most effective tracks are those crossing regions characterized by high mesoscale variability and the presence of frontal structures between water masses. Sampling strategies adopted in summer–autumn 2004 and winter 2005 are studied to assess the impact of VOS and ARGO data in real conditions. The combination of all available data allows to achieve up to 30% error reductions. ARGO data produce a small impact when alone, but represent the only continuous coverage of the basin and are useful as a complement to VOS data sets. Localized data sets, as those obtained by M3As and the Glider, seem to have an almost negligible impact in the basin-scale assessment, and are expected to be more effective at regional scale.


Author(s):  
Ganesh Gopalakrishnan ◽  
Bruce D. Cornuelle ◽  
Matthew R. Mazloff ◽  
Peter F. Worcester ◽  
Matthew A. Dzieciuch

AbstractThe 2010–2011 North Pacific Acoustic Laboratory (NPAL) Philippine Sea experiment measured travel times between six acoustic transceiver moorings in a 660–km diameter ocean acoustic tomography array in the Northern Philippine Sea (NPS). The travel-time series compare favorably with travel times computed for a yearlong series of state estimates produced for this region using the Massachusetts Institute of Technology general circulation model–Estimating the Circulation and Climate of the Ocean four-dimensional variational (MITgcm-ECCO 4DVAR) assimilation system constrained by satellite sea surface height and sea surface temperature observations and by Argo temperature and salinity profiles. Fluctuations in the computed travel times largely match the fluctuations in the measurements caused by the intense mesoscale eddy field in the NPS, providing a powerful test of the observations and state estimates. The computed travel times tend to be shorter than the measured travel times, however, reflecting a warm bias in the state estimates. After processing the travel times to remove tidal signals and extract the low-frequency variability, the differences between the measured and computed travel times were used in addition to SSH, SST, and Argo temperature and salinity observations to further constrain the model and generate improved state estimates. The assimilation of the travel times reduced the misfit between the measured and computed travel times, while not increasing the misfits with the other assimilated observations. The state estimates that used the travel times are more consistent with temperature measurements from an independent oceanographic mooring than the state estimates that did not incorporate the travel times.


2020 ◽  
pp. 1-38
Author(s):  
Bosong Zhang ◽  
Brian J. Soden ◽  
Gabriel A. Vecchi ◽  
Wenchang Yang

AbstractThe impact of radiative interactions on tropical cyclones (TC) climatology is investigated using a global, TC-permitting general circulation model (GCM) with realistic boundary conditions. In this model, synoptic-scale radiative interactions are suppressed by overwriting the model-generated atmospheric radiative cooling rates with its monthly-varying climatological values. When radiative interactions are suppressed, the global TC frequency is significantly reduced, indicating that radiative interactions are a critical component of TC development even in the presence of spatially varying boundary conditions. The reduced TC activity is primarily due to a decrease in the frequency of pre-TC synoptic disturbances (“seeds”), whereas the likelihood that the seeds undergo cyclogenesis is less affected. When radiative interactions are suppressed, TC genesis shifts toward coastal regions, whereas TC lysis locations stay almost unchanged; together the distance between genesis and lysis is shortened, reducing TC duration. In a warmer climate, the magnitude of TC reduction from suppressing radiative interactions is diminished due to the larger contribution from latent heat release with increased sea surface temperatures. These results highlight the importance of radiative interactions in modulating the frequency and duration of TCs.


2016 ◽  
Vol 8 (1) ◽  
pp. 10-21
Author(s):  
Narayan P Gautam ◽  
Manohar Arora ◽  
N.K. Goel ◽  
A.R.S. Kumar

Climate change has been emerging as one of the challenges in the global environment. Information of predicted climatic changes in basin scale is highly useful to know the future climatic condition in the basin that ultimately becomes helpful to carry out planning and management of the water resources available in the basin. Climatic scenario is a plausible and often simplified representation of the future climate, based on an internally consistent set of climatological relationships that has been constructed for explicit use in investigating the potential consequences of anthropogenic climate change. This study based on statistical downscaling, provide good example focusing on predicting the rainfall and runoff patterns, using the coarse general circulation model (GCM) outputs. The outputs of the GCMs are utilized to study the impact of climate change on water resources. The present study has been taken up to identify the climate change scenarios for Satluj river basin, India.Journal of Hydrology and Meteorology, Vol. 8(1) p.10-21


2007 ◽  
Vol 135 (11) ◽  
pp. 3785-3807 ◽  
Author(s):  
A. Bellucci ◽  
S. Masina ◽  
P. DiPietro ◽  
A. Navarra

Abstract In this paper results from the application of an ocean data assimilation (ODA) system, combining a multivariate reduced-order optimal interpolator (OI) scheme with a global ocean general circulation model (OGCM), are described. The present ODA system, designed to assimilate in situ temperature and salinity observations, has been used to produce ocean reanalyses for the 1962–2001 period. The impact of assimilating observed hydrographic data on the ocean mean state and temporal variability is evaluated. A special focus of this work is on the ODA system skill in reproducing a realistic ocean salinity state. Results from a hierarchy of different salinity reanalyses, using varying combinations of assimilated data and background error covariance structures, are described. The impact of the space and time resolution of the background error covariance parameterization on salinity is addressed.


2021 ◽  
pp. 1-46
Author(s):  
Gary M. Lackmann ◽  
Rebecca L. Miller ◽  
Walter A. Robinson ◽  
Allison C. Michaelis

AbstractPersistent anomalies (PAs) are associated with a variety of impactful weather extremes, prompting research into how their characteristics will respond to climate change. Previous studies, however, have not provided conclusive results, owing to the complexity of the phenomenon and to difficulties in general circulation model (GCM) representations of PAs. Here, we diagnose PA activity in ten years of current and projected future output from global, high-resolution (15-km mesh) time-slice simulations performed with the Model for Prediction Across Scales-Atmosphere (MPAS-A). These time slices span a range of ENSO states. They include high-resolution representations of sea-surface temperatures and GCM-based sea ice for present and future climates. Future projections, based on the RCP8.5 scenario, exhibit strong Arctic amplification and tropical upper warming, providing a valuable experiment with which to assess the impact of climate change on PA frequency. The MPAS-A present-climate simulations reproduce the main centers of observed PA activity, but with an eastward shift in the North Pacific and reduced amplitude in the North Atlantic. The overall frequency of positive PAs in the future simulations is similar to that in the present-day simulations, while negative PAs become less frequent. Although some regional changes emerge, the small, generally negative changes in PA frequency and meridional circulation index indicate that climate change does not lead to increased persistence of midlatitude flow anomalies or increased waviness in these simulations.


2009 ◽  
Vol 22 (11) ◽  
pp. 2850-2870 ◽  
Author(s):  
Shu-Chih Yang ◽  
Christian Keppenne ◽  
Michele Rienecker ◽  
Eugenia Kalnay

Abstract Coupled bred vectors (BVs) generated from the NASA Global Modeling and Assimilation Office (GMAO) coupled general circulation model are designed to capture the uncertainties related to slowly varying coupled instabilities. Two applications of the BVs are investigated in this study. First, the coupled BVs are used as initial perturbations for ensemble-forecasting purposes. Results show that the seasonal-to-interannual variability forecast skill can be improved when the oceanic and atmospheric perturbations are initialized with coupled BVs. The impact is particularly significant when the forecasts are initialized from the cold phase of tropical Pacific SST (e.g., August and November), because at these times the early coupled model errors, not accounted for in the BVs, are small. Second, the structure of the BVs is applied to construct hybrid background error covariances carrying flow-dependent information for the ocean data assimilation. Results show that the accuracy of the ocean analyses is improved when Gaussian background covariances are supplemented with a term obtained from the BVs. The improvement is especially noticeable for the salinity field.


Sign in / Sign up

Export Citation Format

Share Document