scholarly journals Wave-turbulence scaling in the ocean mixed layer

2012 ◽  
Vol 9 (6) ◽  
pp. 3761-3793
Author(s):  
G. Sutherland ◽  
K. H. Christensen ◽  
B. Ward

Abstract. Microstructure measurements were collected using an autonomous freely rising profiler under a variety of different atmospheric forcing and sea states in the open ocean. Here, profiles of turbulent kinetic energy dissipation rate, ε, are compared with various proposed scalings. In the oceanic boundary layer, the depth dependence of ε was found to be consistent with that expected for a purely shear-driven wall layer. This is in contrast with many recent studies which suggest higher rates of turbulent kinetic energy dissipation in the near surface of the ocean. However, many dissipation profiles scaled with a Stokes drift-generated shear, suggesting there may be occasions where the shear in the mixed layer are dominated by wave-induced currents, which often causes turbulence to extend beyond the mixed layer depth. Integrating ε in the mixed layer yielded results that 1% of the wind power referenced to 10 m is being dissipated here.

Ocean Science ◽  
2013 ◽  
Vol 9 (4) ◽  
pp. 597-608 ◽  
Author(s):  
G. Sutherland ◽  
B. Ward ◽  
K. H. Christensen

Abstract. Microstructure measurements were collected using an autonomous freely rising profiler under a variety of different atmospheric forcing and sea states in the open ocean. Here, profiles of turbulent kinetic energy dissipation rate, ε, are compared with various proposed scalings. In the oceanic boundary layer, the depth dependence of ε was found to be largely consistent with that expected for a shear-driven wall layer. This is in contrast with many recent studies which suggest higher rates of turbulent kinetic energy dissipation in the near surface of the ocean. However, some dissipation profiles appeared to scale with the sum of the wind and swell generated Stokes shear with this scaling extending beyond the mixed layer depth. Integrating ε in the mixed layer yielded results that 1% of the wind power referenced to 10 m is being dissipated here.


Author(s):  
Suneil Iyer ◽  
Kyla Drushka ◽  
Luc Rainville

AbstractAs part of the second Salinity Processes in the Upper Ocean Regional Study (SPURS-2), the ship-towed Surface Salinity Profiler (SSP) was used to measure near-surface turbulence and stratification on horizontal spatial scales of tens of kilometers over time scales of hours, resolving structures outside the observational capabilities of autonomous or Lagrangian platforms. Observations of microstructure variability of temperature were made at approximately 37 cm depth from the SSP. The platform can be used to measure turbulent kinetic energy dissipation rate when the upper ocean is sufficiently stratified by calculating temperature gradient spectra from the microstructure data and fitting to low wavenumber theoretical Batchelor spectra. Observations of dissipation rate made across a range of wind speeds under 12 m s−1 were consistent with the results of previous studies of near-surface turbulence and with existing turbulence scalings. Microstructure sensors mounted on the SSP can be used to investigate the spatial structure of near-surface turbulence. This provides a new means to study the connections between near-surface turbulence and the larger scale distributions of heat and salt in the near-surface layer of the ocean.


2008 ◽  
Vol 38 (7) ◽  
pp. 1563-1580 ◽  
Author(s):  
Nicole L. Jones ◽  
Stephen G. Monismith

Abstract The vertical distribution of the turbulent kinetic energy dissipation rate was measured using an array of four acoustic Doppler velocimeters in the shallow embayment of Grizzly Bay, San Francisco Bay, California. Owing to the combination of wind and tide forcing in this shallow system, the surface and bottom boundary layers overlapped. Whitecapping waves were generated for a significant spectral peak steepness greater than 0.05 or above a wind speed of 3 m s−1. Under conditions of whitecapping waves, the turbulent kinetic energy dissipation rate in the upper portion of the water column was greatly enhanced, relative to the predictions of wind stress wall-layer theory. Instead, the dissipation followed a modified deep-water breaking-wave scaling. Near the bed (bottom 10% of the water column), the dissipation measurements were either equal to or less than that predicted by wall-layer theory. Stratification due to concentration gradients in suspended sediment was identified as the likely cause for these periods of production–dissipation imbalance close to the bed. During 50% of the well-mixed conditions experienced in the month-long experiment, whitecapping waves provided the dominant source of turbulent kinetic energy over 90% or more of the water column.


Author(s):  
Ewa Jarosz ◽  
Hemantha W. Wijesekera ◽  
David W. Wang

AbstractVelocity, hydrographic, and microstructure observations collected under moderate to high winds, large surface waves, and significant ocean-surface heat losses were utilized to examine coherent velocity structures (CVS) and turbulent kinetic energy (TKE) budget in the mixed layer on the outer shelf in the northern Gulf of Mexico in February 2017. The CVS exhibited larger downward velocities in downweling regions and weaker upward velocities in broader upwelling regions, elevated vertical velocity variance, vertical velocity maxima in the upper part of the mixed layer, and phasing of crosswind velocities relative to vertical velocities near the base of the mixed layer. Temporal scales ranged from 10 min to 40 min and estimated lateral scales ranged from 90 m to 430 m, which were 1.5 – 6 times larger than the mixed layer depth. Nondimensional parameters, Langmuir and Hoenikker numbers, indicated that plausible forcing mechanisms were surface-wave driven Langmuir vortex and destabilizing surface buoyancy flux. The rate of change of TKE, shear production, Stokes production, buoyancy production, vertical transport of TKE, and dissipation in the TKE budget were evaluated. The shear and Stokes productions, dissipation, and vertical transport of TKE were the dominant terms. The buoyancy production term was important at the sea surface, but it decreased rapidly in the interior. A large imbalance term was found under the unstable, high wind, and high-sea state conditions. The cause of this imbalance cannot be determined with certainty through analyses of the available observations; however, our speculation is that the pressure transport is significant under these conditions.


2012 ◽  
Vol 7 (1) ◽  
pp. 53-69
Author(s):  
Vladimir Dulin ◽  
Yuriy Kozorezov ◽  
Dmitriy Markovich

The present paper reports PIV (Particle Image Velocimetry) measurements of turbulent velocity fluctuations statistics in development region of an axisymmetric free jet (Re = 28 000). To minimize measurement uncertainty, adaptive calibration, image processing and data post-processing algorithms were utilized. On the basis of theoretical analysis and direct measurements, the paper discusses effect of PIV spatial resolution on measured statistical characteristics of turbulent fluctuations. Underestimation of the second-order moments of velocity derivatives and of the turbulent kinetic energy dissipation rate due to a finite size of PIV interrogation area and finite thickness of laser sheet was analyzed from model spectra of turbulent velocity fluctuations. The results are in a good agreement with the measured experimental data. The paper also describes performance of possible ways to account for unresolved small-scale velocity fluctuations in PIV measurements of the dissipation rate. In particular, a turbulent viscosity model can be efficiently used to account for the unresolved pulsations in a free turbulent flow


2015 ◽  
Vol 32 (2) ◽  
pp. 318-333 ◽  
Author(s):  
A. D. Greene ◽  
P. J. Hendricks ◽  
M. C. Gregg

AbstractTurbulent microstructure and acoustic Doppler current profiler (ADCP) data were collected near Tacoma Narrows in Puget Sound, Washington. Over 100 coincident microstructure profiles have been compared to ADCP estimates of turbulent kinetic energy dissipation rate (ϵ). ADCP dissipation rates were calculated using the large-eddy method with theoretically determined corrections for sensor noise on rms velocity and integral-scale calculations. This work is an extension of Ann Gargett’s approach, which used a narrowband ADCP in regions with intense turbulence and strong vertical velocities. Here, a broadband ADCP is used to measure weaker turbulence and achieve greater horizontal and vertical resolution relative to the narrowband ADCP. Estimates of ϵ from the Modular Microstructure Profiler (MMP) and broadband ADCP show good quantitative agreement over nearly three decades of dissipation rate, 3 × 10−8–10−5 m2 s−3. This technique is most readily applied when the turbulent velocity is greater than the ADCP velocity uncertainty (σ) and the ADCP cell size is within a factor of 2 of the Thorpe scale. The 600-kHz broadband ADCP used in this experiment yielded a noise floor of 3 mm s−1 for 3-m vertical bins and 2-m along-track average (≈four pings), which resulted in turbulence levels measureable with the ADCP as weak as 3 × 10−8 m2 s−3. The value and trade-off of changing the ADCP cell size, which reduces noise but also changes the ratio of the Thorpe scale to the cell size, are discussed as well.


Sign in / Sign up

Export Citation Format

Share Document