scholarly journals Positive geothermal anomalies in oceanic crust of Cretaceous age offshore Kamchatka

Solid Earth ◽  
2011 ◽  
Vol 2 (2) ◽  
pp. 191-198
Author(s):  
G. Delisle

Abstract. Heat flow measurements were carried out in 2009 offshore Kamchatka during the German-Russian joint-expedition KALMAR. An area with elevated heat flow in oceanic crust of Cretaceous age – detected ~30 yr ago in the course of several Russian heat flow surveys – was revisited. One previous interpretation postulated anomalous lithospheric conditions or a connection between a postulated mantle plume at great depth (>200 km) as the source for the observed high heat flow. However, the positive heat flow anomaly – as our bathymetric data show – is closely associated with the fragmentation of the western flank of the Meiji Seamount into a horst and graben structure initiated during descent of the oceanic crust into the subduction zone offshore Kamchatka. This paper offers an alternative interpretation, which connects high heat flow primarily with natural convection of fluids in the fragmented rock mass and, as a potential additional factor, high rates of erosion, for which evidence is available from our collected bathymetric image. Given high erosion rates, warm rock material at depth rises to nearer the sea floor, where it cools and causes temporary elevated heat flow.

2011 ◽  
Vol 3 (1) ◽  
pp. 453-476
Author(s):  
G. Delisle

Abstract. Heat flow measurements were carried out in 2009 offshore Kamchatka during the German-Russian joint-expedition KALMAR. An area with elevated heat flow in oceanic crust of Cretaceous age – detected ~30 years ago in the course of several Russian heat flow surveys – was revisited. One previous interpretation postulated anomalous lithospheric conditions or a connection between a postulated mantle plume at great depth (> 200 km) as the source for the observed high heat flow. However, the positive heat flow anomaly – as our bathymetric data show – is closely associated with the fragmentation of the western flank of the Meiji Seamount into a horst and graben structure, initiated during descend of the oceanic crust into the subduction zone offshore Kamchatka. This paper offers an alternative interpretation, which connects high heat flow primarily with natural convection of fluids in the fragmented rock mass and, as a potential additional factor, high rates of erosion, for which evidence is available from our collected bathymetric image. Given high erosion rates, warm rock material at depth rises to nearer the sea floor, where it cools and causes temporary elevated heat flow.


2014 ◽  
Vol 6 (1) ◽  
pp. 403-426 ◽  
Author(s):  
K. Erkan

Abstract. Results of a crustal heat flow analysis in western Anatolia based on borehole equilibrium temperatures and rock thermal conductivity data are reported. The dataset comprises 113 borehole sites that were collected in Southern Marmara and Aegean regions of Turkey in 1995–1999. The measurements are from abandoned water wells with depths of 100–150 m. Data were first classed in terms of quality, and the low quality data, including data showing effects of hydrologic disturbances on temperatures, were eliminated. For the remaining 34 sites, one meter resolution temperature-depth curves were carefully analyzed for determination of the background geothermal gradients, and any effects of terrain topography and intra-borehole fluid flow were corrected when necessary. Thermal conductivities were determined either by direct measurements on representative surface outcrop or estimated from the borehole lithologic records. The calculated heat flow values are 85–90 mW m−2 in the northern and central parts of the Menderes horst-graben system. Within the system, the highest heat flow values (> 100 mW m−2) are observed in the northeastern part of Gediz Graben, near Kula active volcanic center. The calculated heat flow values are also in agreement with the results of studies on the maximum depth of seismicity in the region. In the Menderes horst-graben system, surface heat flow is expected to show significant variations as a result of active sedimentation and thermal refraction in grabens, and active erosion on horst detachment zones. High heat flow values (90–100 mW m−2) are also observed in the peninsular (western) part of Çanakkale province. The heat flow anomaly here may be an extension of the high heat flow zone previously observed in the northern Aegean Sea. Moderate heat flow values (60–70 mW m−2) are observed in eastern part of Çanakkale and central part of Balıkesir provinces.


There are now twelve heat flow measurements in the Red Sea made with heat flow probes from survey ships and several sets of temperature measurements made in deep exploration boreholes. The oceanic measurements are in water depths ranging from 0.94 to 2.70 km and all but one of these measurements give values significantly higher than the world mode of 46 mW m -2 (1.1 ). They include the world record high oceanic measurement of more than 3307 mW m -2 (79.0) in the neighbourhood of the hot brine pools. These measurements show that the deep axial trough of the Red Sea is associated with high heat flow, the values being similar to those found in the mid-Indian Ocean rift, the mid-Atlantic rift and over the crest of the East Pacific rise. It is of considerable interest to see if there is also high heat flow over the Red Sea margins and the main purpose of this paper is to examine temperature data from deep exploration boreholes. The boreholes are drilled mainly in rock salt, sandstones and shales. A discussion is given of the thermal conductivities assumed for these rocks. The boreholes have depths of up to 4 km and in some cases the temperature measurements enable an estimate to be made of the heat flow. These are also found to be high. The significance of the high heat flow to ideas concerning the structure and evolution of the Red Sea is discussed.


1972 ◽  
Vol 9 (6) ◽  
pp. 664-670 ◽  
Author(s):  
R. D. Hyndman ◽  
D. S. Rankin

Eighteen heat flow measurements on the Mid-Atlantic Ridge, in the detailed study area between 45 and 46 °N, have a pattern of low values up to 20 km from the median valley, high heat flow 30 to 40 km away, low values again 50 to 100 km away, finally increasing to normal heat flow at great distances. The smoothed heat flow profile is everywhere lower than that predicted by theoretical cooling plate models.It is concluded that convective water flow in the fractured, porous crustal rocks of the ridge is responsible for the low heat flow near the crest. Higher values (at 30 to 40 km from the crest) occur when the sediment cover is sufficient to cut off communication between the crust and seawater. The low heat flow zone at 50 to 100 km from the crest can be explained by heat required to warm the convectively cooled crust when the rocks are sealed and circulation stops, and by the heat absorbed in lower crustal metamorphic reactions.


Terra Nova ◽  
2021 ◽  
Author(s):  
Rosa Maria Prol‐Ledesma ◽  
Juan Luis Carrillo De La Cruz ◽  
Marco‐Antonio Torres‐Vera ◽  
Alejandro Estradas‐Romero

1985 ◽  
Vol 22 (3) ◽  
pp. 416-421 ◽  
Author(s):  
J. H. Sass ◽  
L. A. Lawver ◽  
R. J. Munroe

Heat flow was measured at nine sites in crystalline and sedimentary rocks of southeastern Alaska. Seven of the sites, located between 115 and 155 km landward of the Queen Charlotte – Fairweather transform fault, have an average heat flow of 59 ± 6 mW m−2. This value is significantly higher than the mean of 42 mW m−2 in the coastal provinces between Cape Mendocino and the Queen Charlotte Islands, to the south, and is lower than the mean of 72 ± 2 mW m−2 for 81 values within 100 km of the San Andreas transform fault, even farther south. This intermediate value suggests the absence of significant heat sinks associated with Cenozoic subduction and of heat sources related to either late Cenozoic tectono-magmatic events or significant shear-strain heating. At Warm Springs Bay, 75 km from the plate boundary, an anomalously high heat flow of 150 mW m−2 can most plausibly be ascribed to the thermal spring activity from which its name is derived. At Quartz Hill, 240 km landward of the plate boundary, a value of 115 mW m−2 might indicate a transition to a province of high heat flow resulting from late Tertiary and Quaternary extension and volcanism.


1996 ◽  
Vol 23 (21) ◽  
pp. 3027-3030 ◽  
Author(s):  
L. Guillou-Frottier ◽  
C. Jaupart ◽  
J. C. Mareschal ◽  
C. Gariépy ◽  
G. Bienfait ◽  
...  

Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 635
Author(s):  
Liam A. Bullock ◽  
John Parnell ◽  
Joseph G.T. Armstrong ◽  
Magali Perez ◽  
Sam Spinks

Gold grains, up to 40 μm in size and containing variable percentages of admixed platinum, have been identified in coals from the Leinster Coalfield, Castlecomer, SE Ireland, for the first time. Gold mineralisation occurs in sideritic nodules in coals and in association with pyrite and anomalous selenium content. Mineralisation here may have reflected very high heat flow in foreland basins north of the emerging Variscan orogenic front, responsible for gold occurrence in the South Wales Coalfield. At Castlecomer, gold (–platinum) is attributed to precipitation with replacive pyrite and selenium from groundwaters at redox interfaces, such as siderite nodules. Pyrite in the cores of the nodules indicates fluid ingress. The underlying Caledonian basement bedrock is mineralised by gold, and thus likely provided a source for gold. The combination of the gold occurrences in coal in Castlecomer and in South Wales, proximal to the Variscan orogenic front, suggests that these coals along the front could comprise an exploration target for low-temperature concentrations of precious metals.


2021 ◽  
Author(s):  
Dongwoo Han ◽  
Changyeol Lee

<p>Heat flow in the fore-arc, Northeast Japan shows characteristic highs and lows in the seaward and landward regions of the trench axis, respectively, compared to 50 mW/m<sup>2</sup> that is constrained from the corresponding half-space cooling model (135 Ma). For example, the high average of 70 mW/m<sup>2</sup> at the 150-km seaward region from the trench was observed while the low average of 30 mW/m<sup>2</sup> at the 50-km landward region was. To explain the differences between the constraints and observations of the heat flow, previous studies suggested that the high heat flow in the seaward region results from the reactivated hydrothermal circulations in the oceanic crust of the Pacific plate along the developed fractures by the flexural bending prior to subduction. The low heat flow is thought to result from thermal blanket effect of the accretionary prism that overlies the cooled subducting slab by the hydrothermal circulations. To understand heat transfer in the landward region of the trench, a series of two-dimensional numerical models are constructed by considering hydrothermal circulations in the kinematically thickening accretionary prism that overlies the converging oceanic crust of the Pacific plate where hydrothermal circulations developed prior to subduction. The model calculations demonstrate no meaningful hydrothermal circulations when the reasonable bulk permeability of the accretionary prism(<10<sup>-14</sup>m<sup>2</sup>) is used; the thermal blanket effect significantly hinders the heat transfer, yielding only the heat flow of 10 mW/m<sup>2</sup> in the landward region, much lower than the average of 30 mW/m<sup>2</sup>. This indicates that other mechanisms such as the expelled pore fluid by compaction of the accretionary prism play important roles in the heat transfer across the accretionary prism.</p>


Sign in / Sign up

Export Citation Format

Share Document