scholarly journals The effectiveness of jute and coir erosion control blankets in different field and laboratory conditions

2016 ◽  
Author(s):  
J. Kalibová ◽  
L. Jačka ◽  
J. Petrů

Abstract. A vegetation cover is found to be an ideal solution to most problems with erosion on steep slopes. Biodegradable geotextiles (GTX) have been proved to provide a sufficient protection against soil loss in the period before the vegetation reaches maturity. In this study, 500 g.m−2 jute (J500), 400 g.m−2 (C400), and 700 g.m−2 coir (C700) GTX were installed firstly on 9° slope in “no-inf iltration” laboratory conditions, secondly on 27° slope in natural field conditions. The impact of GTX on runoff and soil loss was investigated to compare the performance of GTX in different conditions. Laboratory runoff ratio (percentage portion of control plot) equaled 78 %, 83 % and 91 % and peak discharge ratio equaled 83 %, 91 % and 97 % for J500, C700 and C400, respectively. In the field, a runoff ratio of 31 %, 62 % and 79 % and peak discharge ratio of 37 %, 74 % and 87 % were recorded for C700, J500 and C400, respectively. All tested GTX significantly decreased soil erosion. The highest soil loss reduction in the field was observed for J500 (by 99.4%) followed by C700 (by 97.9%) and C400 (by 93.8%). Irrespective of slope gradient or experiment condition, C400 provided lower runoff volume and peak discharge control than J500 and C700. The performance ranking of J500 and C700 in the laboratory differed from the field, which may be explained by different slope gradient and also by the role of soil, which was not included in the laboratory experiment.

Solid Earth ◽  
2016 ◽  
Vol 7 (2) ◽  
pp. 469-479 ◽  
Author(s):  
Jana Kalibová ◽  
Lukáš Jačka ◽  
Jan Petrů

Abstract. Vegetation cover is found to be an ideal solution to most problems of erosion on steep slopes. Biodegradable geotextiles (GTXs) have been proved to provide sufficient protection against soil loss in the period before vegetation reaches maturity, so favouring soil formation processes. In this study, 500 g m−2 jute (J500), 400 g m−2 (C400), and 700 g m−2 coir (C700) GTXs were first installed on a 9° slope under “no-infiltration” laboratory conditions, then on a 27° slope under natural field conditions. The impact of GTXs on run-off and soil loss was investigated to compare the performance of GTXs under different conditions. Laboratory run-off ratio (percentage portion of control plot) equalled 78, 83, and 91 %, while peak discharge ratio equalled 83, 91, and 97 % for J500, C700, and C400 respectively. In the field, a run-off ratio of 31, 62, and 79 %, and peak discharge ratio of 37, 74, and 87 % were recorded for C700, J500, and C400 respectively. All tested GTXs significantly decreased soil erosion. The greatest soil loss reduction in the field was observed for J500 (by 99.4 %), followed by C700 (by 97.9 %) and C400 (by 93.8 %). Irrespective of slope gradient or experimental condition, C400 performed with lower run-off and peak discharge reduction than J500 and C700. The performance ranking of J500 and C700 in the laboratory differed from the field, which may be explained by different slope gradients, and also by the role of soil, which was not included in the laboratory experiment.


2013 ◽  
Vol 34 (3) ◽  
pp. 236-259 ◽  
Author(s):  
Gebeyehu Taye ◽  
Jean Poesen ◽  
Bas Van Wesemael ◽  
Matthias Vanmaercke ◽  
Daniel Teka ◽  
...  

CATENA ◽  
2014 ◽  
Vol 118 ◽  
pp. 168-178 ◽  
Author(s):  
Jesús Álvarez-Mozos ◽  
Eguzki Abad ◽  
Rafael Giménez ◽  
Miguel A. Campo ◽  
Mikel Goñi ◽  
...  

2002 ◽  
Vol 82 (2) ◽  
pp. 249-258 ◽  
Author(s):  
H W Rees ◽  
T L Chow ◽  
P J Loro ◽  
J. Lavoie ◽  
J O Monteith ◽  
...  

Soil erosion by water associated with potato production in northwestern New Brunswick has been identified as one of the most severe soil degradation problems affecting soil quality in Canada. The objectives of this study were to evaluate the effectiveness of applying various rates of hay mulch following potato (Solanum tuberosum L.) harvest in reducing runoff and soil loss rates under northwestern New Brunswick climatic and soil conditions and to determine the impact of the various hay mulch application rates on potato yield. Wischmeier-like runoff-erosion plots (10 m wide by 30 m long) on a Holmesville gravelly loam soil were used. Annual hay mulch application rates of 0.00, 2.25, 4.50 and 9.00 t ha-1 wet mass were evaluated under continuous up-and-down-slope potato production on 8 and 11% slopes between October 1995 and October 1999. During the study period, annual precipitation was lower than normal. Calculated rainfall erosivities were 102, 66, 73 and 133% of the value typically used for conservation planning in this region (1276 MJ mm ha-1h-1). Seventy-three percent of the average annual erosivity for the 4-yr period was associated with storms occurring in June, July, August and September. Hay mulching at rates of 2.25, 4.50 and 9.00 t ha-1 conserved on average 13, 18 and 28 mm of June to September precipitation, respectively. Mean annual soil losses were reduced to 14, 7 and 2% of the control (5.6 t ha-1) by the 2.25, 4.50 and 9.00 t ha-1 treatments, respectively, on the 11% slope and to 43 and 24% of the control (2.0 t ha-1) on the 2.25 and 4.50 t ha-1 treatments, respectively, on the 8% slope. Eroded sediment silt, clay and organic matter (OM) contents were 1.6, 1.9 and 2.3 times the content of the surface soil at the experimental site. Mulching at rates as low as 2.25 t ha-1 reduced nutrient losses of NO3-N and available P, K, Ca and Mg to 26, 18, 28, 20 and 24% of control, respectively, on the 11% slope, and to 81, 50, 82, 66 and 77% of control, respectively, on the 8% slope. However, levels of nutrient losses from the controls were low to begin with (2.0, 0.4, 2.8, 10.9 and 1.6 kg ha-1 of NO3-N, and available P, K, Ca and Mg, respectively). Both total and marketable potato crop yields from all 2.25 and 4.50 t ha-1 treatments were in excess of 5% greater than their controls; however, only the increases in total yields from the 2.25 and 4.50 t ha-1 treatments and marketable yield from the 4.50 t ha-1 treatment on the 8% slope were significantly greater at P< 0.05. Yield of potato on the 9.00 t ha-1 treatment showed a consistent increase in total yield over the 4-yr period, going from 80% of control in 1996 to 127% of control in 1999, indicating a possible improvement in soil productivity. Hay mulching at rates up to 9.00 t ha-1 did not increase the incidence of disease or other defects. Hay mulching was found to be an effective tool for reducing soil loss while maintaining, and in some cases enhancing, potato yield. Key words: Hay mulching, soil loss, water erosion, organic residues, sediment composition, nutrient loss, erosivity


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 529 ◽  
Author(s):  
Chenlu Huang ◽  
Qinke Yang ◽  
Xiayu Cao ◽  
Yuru Li

Soil erosion is a serious environmental problem in the Loess Plateau, China. Therefore, it is important to understand and evaluate soil erosion process in a watershed. In this study, the Chinese Soil Loss Equation (CSLE) is developed to evaluate the soil loss and analyze the impact of land use and slope on soil erosion in Jiuyuangou (JYG) watershed located in the hilly-gullied loess region of China 1970–2015. The results show that the quantities of soil erosion decreased clearly from 1977 to 2015 in the study area, which from 2011 (t/km²·a) in 1977 to 164 (t/km²·a) in 2004 and increased slowly to 320 (t/km²·a) in 2015. No significant soil erosion (<300 t/km²·a) changed in JYG watershed, which increased dramatically from 8.93% to 69.34% during 1977–2015. The area of farmland in this study area has been reduced drastically. Noting that the annual average soil erosion modulus of grassland was also showing a dropped trend from 1977 to 2015. In addition, the study shows that the annual average soil erosion modulus varied with slope gradient and the severe soil erosion often existed in the slope zone above 25°, which accounted for 4657 (t/km²·a) in 1977 and 382.27 (t/km²·a) in 2015. Meanwhile, soil erosion of different land-use types presented the similar changing trend (declined noticeably and then increased slowly) with the change of slope gradient from 1977 to 2015. Combined the investigations of extreme rainfall on 26 July 2015 for JYG watershed, the study provides the scientific support for the implementation of soil and water conservation measures to reduce the soil erosion and simplify Yellow River management procedures.


Soil Research ◽  
1983 ◽  
Vol 21 (4) ◽  
pp. 445 ◽  
Author(s):  
PIA Kinnell

Data obtained from three 0.01 ha runoff and soil-loss plots, established with a bare fallow treatment on a yellow podzolic (Albaqualf) soil and slope gradient of 4.2%, were analysed in terms of the kinetic energy of raindrops and the efficiency of the use of that energy in generating soil loss. The results indicate that the difference between rainfall intensity and the average infiltration (acceptance) rate of the soil during an event can be used to estimate variations in the efficiency of use of rainfall energy in generating sheet erosion.


2014 ◽  
Vol 955-959 ◽  
pp. 3489-3498
Author(s):  
Fa Hu Li ◽  
Ai Ping Wang ◽  
L. S. Wu

Runoff and soil loss affect both farmland productivity and environmental quality. This study tested the interaction effects among polyacrylamide (PAM) application rate, PAM molecular weight, and slope gradient on runoff and soil loss under simulated sprinkler irrigation in laboratory. Experimental treatments consisted of four PAM application rates of 0 (control), 0.5, 1.0, and 2.0 g m-2, two PAM molecular weights of 12 and 18 Mg mol-1, and three slope gradients of 5o, 15o, and 25o. Results indicated that compared with the control treatment, PAM application generally decreased total runoff volume but increased soil loss. Total runoff volume and soil loss increased with the increased PAM application rate. Under control treatment, total runoff volume increased with the increased slope gradient. However, total runoff volume was similar for different slope gradients when PAM application rates were 0.5 and 1.0 g m-2, but it decreased with the increased slope gradient when PAM application rate was 2.0 g m-2. Total soil loss increased with the increase of slope gradient under experimental conditions. Polyacrylamide molecular weight did not affect total runoff volume but did soil loss significantly atP< 0.001, and a high PAM molecular weight resulted in less soil loss than a low one did. Statistical analysis demonstrated that there existed a significant interaction effect atP< 0.001 between PAM application rate and soil slope gradient on runoff volume and soil loss. The interaction effects between PAM molecular weight and slope gradient or among PAM application rate, PAM molecular weight, and slope gradient on soil loss were also significant atP< 0.01. A PAM application rate less than 2 g m-2is suggested to control water and soil loss on sloped lands under sprinkler irrigation.


Sign in / Sign up

Export Citation Format

Share Document