scholarly journals Supplementary material to "Regional-scale paleofluid system across the Tuscan Nappe – Umbria Marche Arcuate Ridge (northern Apennines) as revealed by mesostructural and isotopic analyses of stylolite-vein networks"

Author(s):  
Nicolas Beaudoin ◽  
Aurélie Labeur ◽  
Olivier Lacombe ◽  
Daniel Koehn ◽  
Andrea Billi ◽  
...  
Solid Earth ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 1617-1641 ◽  
Author(s):  
Nicolas E. Beaudoin ◽  
Aurélie Labeur ◽  
Olivier Lacombe ◽  
Daniel Koehn ◽  
Andrea Billi ◽  
...  

Abstract. We report the results of a multiproxy study that combines structural analysis of a fracture–stylolite network and isotopic characterization of calcite vein cements and/or fault coating. Together with new paleopiezometric and radiometric constraints on burial evolution and deformation timing, these results provide a first-order picture of the regional fluid systems and pathways that were present during the main stages of contraction in the Tuscan Nappe and Umbria–Marche Apennine Ridge (northern Apennines). We reconstruct four steps of deformation at the scale of the belt: burial-related stylolitization, Apenninic-related layer-parallel shortening with a contraction trending NE–SW, local extension related to folding, and late-stage fold tightening under a contraction still striking NE–SW. We combine the paleopiezometric inversion of the roughness of sedimentary stylolites – that constrains the range of burial depth of strata prior to layer-parallel shortening – with burial models and U–Pb absolute dating of fault coatings in order to determine the timing of development of mesostructures. In the western part of the ridge, layer-parallel shortening started in Langhian time (∼15 Ma), and then folding started at Tortonian time (∼8 Ma); late-stage fold tightening started by the early Pliocene (∼5 Ma) and likely lasted until recent/modern extension occurred (∼3 Ma onward). The textural and geochemical (δ18O, δ13C, Δ47CO2 and 87Sr∕86Sr) study of calcite vein cements and fault coatings reveals that most of the fluids involved in the belt during deformation either are local or flowed laterally from the same reservoir. However, the western edge of the ridge recorded pulses of eastward migration of hydrothermal fluids (>140 ∘C), driven by the tectonic contraction and by the difference in structural style of the subsurface between the eastern Tuscan Nappe and the Umbria–Marche Apennine Ridge.


2020 ◽  
Author(s):  
Nicolas Beaudoin ◽  
Aurélie Labeur ◽  
Olivier Lacombe ◽  
Daniel Koehn ◽  
Andrea Billi ◽  
...  

Abstract. We report the results of a multi-proxy study that combines structural analysis of fracture-stylolite network and isotopic characterization of calcite vein cements/fault coating. Together with new paleopiezometric and radiometric constraints on burial evolution and deformation timing, these results provide a first-order picture of the regional fluid pathways network during the main stages of contraction in the Tuscan Nappe and Umbria Marche arcuate ridge (Northern Apennines).We reconstruct four continuous steps of deformation at the scale of the belt: burial that developed sedimentary stylolites, Apenninic-related layer parallel shortening with a contraction striking NE-SW, local extension related to folding, then a late stage of fold tightening under a contraction still striking NE-SW. In order to assess the timing and burial depth of strata at all stages, we combine a paleopiezometric tool based on inversion of the roughness of sedimentary stylolites that constrains the range of burial depth of strata prior to layer-parallel shortening, with burial models and U-Pb absolute dating of fault coatings. In the western part of the ridge, layer-parallel shortening started in Serravalian time (~ 12 Ma), then folding started at Tortonian time (~ 8 Ma), late stage fold tightening started in early Zanclean (~ 5 Ma) and likely lasted until recent/modern extension occurred (~ 3 Ma onward). This timing provides important constraints on the temperature that expectedly prevailed in the studied strata through its history. The textural and geochemical (δ18O, δ13C, Δ47CO2 and 87Sr/86Sr) study of calcite vein cements and fault coatings reveals that most of the fluids involved in the belt during deformation are local, or flowed laterally from the same reservoir. However, the western edge of the ridge recorded pulses of eastward squeegee-type migration of hydrothermal fluids (> 140 °C), that can be related to the difference in structural style of the subsurface between the eastern Tuscan Nappe and the Umbria Marche Ridge.


2020 ◽  
Vol 177 (5) ◽  
pp. 1074-1091
Author(s):  
Estibalitz Ukar ◽  
Vinyet Baqués ◽  
Stephen E. Laubach ◽  
Randall Marrett

At >7 km depths in the Tarim Basin, hydrocarbon reservoirs in Ordovician rocks of the Yijianfang Formation contain large cavities (c. 10 m or more), vugs, fractures and porous fault rocks. Although some Yijianfang Formation outcrops contain shallow (formed near surface) palaeokarst features, cores from the Halahatang oilfield lack penetrative palaeokarst evidence. Outcrop palaeokarst cavities and opening-mode fractures are mostly mineral filled but some show evidence of secondary dissolution and fault rocks are locally highly (c. 30%) porous. Cores contain textural evidence of repeated formation of dissolution cavities and subsequent filling by cement. Calcite isotopic analyses indicate depths between c. 220 and 2000 m. Correlation of core and image logs shows abundant cement-filled vugs associated with decametre-scale fractured zones with open cavities that host hydrocarbons. A Sm–Nd isochron age of 400 ± 37 Ma for fracture-filling fluorite indicates that cavities in core formed and were partially cemented prior to the Carboniferous, predating Permian oil emplacement. Repeated creation and filling of vugs, timing constraints and the association of vugs with large cavities suggest dissolution related to fractures and faults. In the current high-strain-rate regime, corroborated by velocity gradient tensor analysis of global positioning system (GPS) data, rapid horizontal extension could promote connection of porous and/or solution-enlarged fault rock, fractures and cavities.Supplementary material: Stable isotopic analyses and the velocity gradient tensor and principal direction and magnitude calculation are available at https://doi.org/10.6084/m9.figshare.c.4946046Thematic collection: This article is part of the The Geology of Fractured Reservoirs collection available at: https://www.lyellcollection.org/cc/the-geology-of-fractured-reservoirs


2020 ◽  
Author(s):  
Griso Lorenzo ◽  
Bistacchi Andrea ◽  
Storti Fabrizio

<p>We present preliminary results of a structural analysis and 3D modelling project carried out along a transect in the Santerno Valley, between Firenzuola (Tuscany) and the outskirts of Imola. The aim of the project is to combine surface geological and structural data (available thanks to the national geological mapping CARG project and original surveys), with the available subsurface data (2D seismics and a few wells), and obtain a comprehensive 3D framework for deformation in this key area of the Northern Apennines. In addition, by combining geodetic, seismicity and interferometric data with the 3D structural model, we are able to obtain a better picture of the active structures in the area.</p><p>Our analysis shows that the studied transect is at the northern periclinal hinge of a regional anticline/window where the Marnoso-Arenacea Formation crops out and is crosscut by several regional-scale thrusts. Subsurface data suggest that these relatively shallow thrusts are rooted at the top of Mesozoic carbonates, that do not crop out in the area. Different balancing algorithms confirm a relevant along-strike variation of slip along these thrusts, that reduce their offset towards the periclinal hinge to the west.</p><p>In the more external part of the transect, towards the lower hills and the plain around Imola, a regional-scale pop-up, evidenced by the late-Messinian unconformity, is the main feature in subsurface datasets. This structure is rooted at the base of Mesozoic carbonates and is characterized by large and continuous ramps that can be considered candidates for recent earthquakes in the area.</p>


2020 ◽  
pp. jgs2020-081
Author(s):  
Torin Cannings ◽  
Elizabeth M. Balmer ◽  
Giovanni Coletti ◽  
Ryan B. Ickert ◽  
Dick Kroon ◽  
...  

The existing chronostratigraphic framework in NW Cyprus of two-phase, Early and Late Miocene reef and associated facies development is tested and improved using a combination of calcareous nannofossil, benthic and planktic foraminiferal, and also Sr isotope dating. Following localised Late Oligocene neritic carbonate deposition (e.g. benthic foraminiferal shoals), reefs and related facies (Terra Member) began to develop c. 24 Ma (Aquitanian) and terminated c. 16 Ma (end-Burdigalian). Early Miocene reef and marginal facies were then extensively redeposited as multiple debris-flow deposits until c. 13.7 Ma, influenced by a combination of global sea-level fall (related to growth of the East Antarctic Ice Sheet) and local- to regional-scale tectonics. Reef growth and related deposition resumed (Koronia Member) c. 9.1 Ma (Tortonian), then terminated by c. 6.1 Ma (mid-Messinian), followed by the Messinian salinity crisis. Neritic accumulation in NW Cyprus began earlier (Late Oligocene), than in southern Cyprus (Early Miocene). The Early Miocene reefs developed on a c. N-S-trending structural high in the west (Akamas Peninsula area) whereas the Late Miocene reefs developed on both flanks of the neotectonic Polis graben. The two-phase reef development is mirrored in SE Cyprus and in some other Mediterranean areas; e.g. S Turkey, Israel, Italy, S Spain.Supplementary material: GPS Locations of dated samples, the Sr isotope method and the samples examined for planktic foraminifera biostratigraphy are available at https://doi.org/10.6084/m9.figshare.c.5205315.


2021 ◽  
pp. SP507-2020-207
Author(s):  
V. Daux ◽  
B. Minster ◽  
A. Cauquoin ◽  
O. Jossoud ◽  
M. Werner ◽  
...  

AbstractThe isotopic composition of oxygen (δ18O), and hydrogen (δ2H) are widely used to locate the geographical origin of biological remains or manufactured products. In this paper, we analyze the distributions of δ18O and δ2H in tap waters sampled across France, and in precipitation interpolated with OIPC and modelled with the isotope-enabled ECHAM6-wiso model. Our aim is to provide isoscapes usable in archaeology and forensics and evaluate if modelled data could be surrogates for measured ones.The δ18O and δ2H in the 396 tap waters sampled vary spatially within a range of 10‰ and 77‰ respectively. Their consistent distributions follow rules summarized by the effects of altitude and distance from the coast. Their variations along the year are small. Therefore, the database provides a solid reference for δ18O and δ2H of the water supply system at the regional scale. The areas with the most uncommon oxygen and hydrogen isotopic compositions (Atlantic coast South of Brittany and the highest elevations in the Alps) are the most accurately traceable areas in provenancing studies.The isotopic compositions of modelled precipitation have the same spatial distributions but different absolute values from those of tap waters. Therefore, our results favour the use of statistical isoscapes rather than GCM-based isoscapes in provenancing studies.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5256034


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2535
Author(s):  
Veronica Guerra ◽  
Maurizio Lazzari

Studying fluvial dynamics and environments, GIS-based analyses are of fundamental importance to evaluate the network geometry and possible anomalies, and can be particularly useful to estimate modifications in processes and erosion rates. The aim of this paper is to estimate short-term erosion rates attributable to fluvial processes in two sample catchment sub-basins of the Marecchia river valley, by conducting quantitative morphometric analyses in order to calculate various descriptive parameters of the hierarchisation of the river networks and the mean turbid transport of streams (Tu). Sediment yield transported by streams can in fact partially express the amount of erosional processes acting within the drainage basin. The study area includes two sub-basins of the Marecchia valley (Senatello river, 49 km2 and Mazzocco river, 47 km2), chosen because of their similar extent and of the different location in the major catchment basin. Starting from geomorphological maps of the two river basins, the Tu parameter has been calculated and converted in short-term rate (average value 0.21 mm/year). Moreover, the comparison of these short-term mean data with the uplift rates calculated on a regional scale (0.41 ± 0.26 mm/year) in the Marecchia valley confirms that the northern Apennines may represent a non-steady state system.


Sign in / Sign up

Export Citation Format

Share Document