Zircon U–Pb geochronology of the Zanhuang metamorphic complex: reappraisal of the Palaeoproterozoic amalgamation of the Trans-North China Orogen

2013 ◽  
Vol 150 (4) ◽  
pp. 756-764 ◽  
Author(s):  
LING-LING XIAO ◽  
GUO-DONG WANG ◽  
HAO WANG ◽  
ZONG-SHENG JIANG ◽  
CHUN-RONG DIWU ◽  
...  

AbstractAmphibolites and metapelites exposed in the Zanhuang metamorphic complex situated in the south-middle section of the Trans-North China Orogen (TNCO) underwent upper-amphibolite-facies metamorphism and record clockwise P–T paths including retrograde isothermal decompression. High-resolution zircon U–Pb geochronological analyses indicate that the metamorphic peak occurred during ~ 1840–1860 Ma, which is in accordance with the ubiquitous metamorphic ages of ~ 1850 Ma retrieved by miscellaneous geochronologic methods throughout the metamorphic terranes of the northern TNCO, confirming that the south-middle section of the TNCO was involved in the amalgamation of the Eastern and Western Blocks of the North China Craton during the Palaeoproterozoic.

2014 ◽  
Vol 152 (2) ◽  
pp. 367-377 ◽  
Author(s):  
JUN-SHENG LU ◽  
GUO-DONG WANG ◽  
HAO WANG ◽  
HONG-XU CHEN ◽  
TAO PENG ◽  
...  

AbstractHigh-resolution SIMS U–Pb dating of metamorphic zircons of the TTG gneisses, gneissic granitoid and amphibolites of the Lushan terrane, Taihua metamorphic complex, suggests that the metamorphism had taken place at least as early as ~1.96–1.86 Ga. These new dates, along with reference data, demonstrate that the southern and middle terranes of the Trans-North China Orogen had been involved in the continent–continent collision between the Western Block and the Eastern Block of the North China Craton. This orogenic process started as early as 1.96 Ga and lasted as late as 1.80 Ga.


Solid Earth ◽  
2018 ◽  
Vol 9 (6) ◽  
pp. 1375-1397 ◽  
Author(s):  
Yi Ni Wang ◽  
Wen Liang Xu ◽  
Feng Wang ◽  
Xiao Bo Li

Abstract. To investigate the timing of deposition and provenance of early Mesozoic strata in the northeastern North China Craton (NCC) and to understand the early Mesozoic paleotectonic evolution of the region, we combine stratigraphy, U–Pb zircon geochronology, and Hf isotopic analyses. Early Mesozoic strata include the Early Triassic Heisonggou, Late Triassic Changbai and Xiaoyingzi, and Early Jurassic Yihe formations. Detrital zircons in the Heisonggou Formation yield  ∼ 58 % Neoarchean to Paleoproterozoic ages and  ∼ 42 % Phanerozoic ages and were sourced from areas to the south and north of the basins within the NCC, respectively. This indicates that Early Triassic deposition was controlled primarily by the southward subduction of the Paleo-Asian oceanic plate beneath the NCC and collision between the NCC and the Yangtze Craton (YC). Approximately 88 % of the sediments within the Late Triassic Xiaoyingzi Formation were sourced from the NCC to the south, with the remaining  ∼ 12 % from the Xing'an–Mongolia Orogenic Belt (XMOB) to the north. This implies that Late Triassic deposition was related to the final closure of the Paleo-Asian Ocean during the Middle Triassic and the rapid exhumation of the Su–Lu Orogenic Belt between the NCC and YC. In contrast,  ∼ 88 % of sediments within the Early Jurassic Yihe Formation were sourced from the XMOB to the north, with the remaining  ∼ 12 % from the NCC to the south. We therefore infer that rapid uplift of the XMOB and the onset of the subduction of the Paleo-Pacific Plate beneath Eurasia occurred in the Early Jurassic.


2017 ◽  
Vol 60 (5) ◽  
pp. 505-519
Author(s):  
ZHAO Jin-Ren ◽  
LIU Bao-Jin ◽  
DUAN Yong-Hong ◽  
PAN Su-Zhen ◽  
FAN Zhen-Yu ◽  
...  

2021 ◽  
pp. 1-24
Author(s):  
Mingyue Gong ◽  
Wei Tian ◽  
Zhuang Li ◽  
Bin Fu ◽  
Chunjing Wei

Abstract The Songling and Majiayu peridotite blocks occur in the Eastern Block, North China Craton (NCC). Geothermobarometry data show that the Songling peridotites began exhumation from a depth of c. 70 km (c. 23 kbar). During exhumation, the Songling peridotites were intruded by an upper-crust-derived, high-δ18O (up to +7.28‰ in zircon) trondhjemitic dyke at 2.47 Ga and experienced granulite-facies metamorphism. The Songling peridotites have hybrid mantle wedge (HMW) -like high SiO2 (> 45 wt%), high FeOt (c. 10 wt%) content, high modal orthopyroxene abundance (> 35%) and high ϵNd(t) (+18.4 to +21.4), which were generated by the reaction between peridotite and eclogite-derived melts. The clinopyroxenes from the Songling peridotites were in equilibrium with a Nb-, Zr- and Ti-depleted arc-like magma. The Majiayu peridotites are characterized by depletion of Nb, Zr and Hf and are highly enriched in FeOt, Th and light rare earth elements (LREEs), which can be interpreted as an open system reaction between hydrous melts and fore-arc mantle peridotites. These two peridotite blocks are considered to be arc-related mantle peridotites that experienced melt extraction and metasomatism in different styles. They were exhumed to the north margin of the North China Craton during the c. 2.47 Ga arc–continent collision along the Zunhua structural belt.


Sign in / Sign up

Export Citation Format

Share Document