scholarly journals Using satellite laser ranging to measure ice mass change in Greenland and Antarctica

2018 ◽  
Vol 12 (1) ◽  
pp. 71-79 ◽  
Author(s):  
Jennifer A. Bonin ◽  
Don P. Chambers ◽  
Minkang Cheng

Abstract. A least squares inversion of satellite laser ranging (SLR) data over Greenland and Antarctica could extend gravimetry-based estimates of mass loss back to the early 1990s and fill any future gap between the current Gravity Recovery and Climate Experiment (GRACE) and the future GRACE Follow-On mission. The results of a simulation suggest that, while separating the mass change between Greenland and Antarctica is not possible at the limited spatial resolution of the SLR data, estimating the total combined mass change of the two areas is feasible. When the method is applied to real SLR and GRACE gravity series, we find significantly different estimates of inverted mass loss. There are large, unpredictable, interannual differences between the two inverted data types, making us conclude that the current 5×5 spherical harmonic SLR series cannot be used to stand in for GRACE. However, a comparison with the longer IMBIE time series suggests that on a 20-year time frame, the inverted SLR series' interannual excursions may average out, and the long-term mass loss estimate may be reasonable.

2017 ◽  
Author(s):  
Jennifer A. Bonin ◽  
Don P. Chambers ◽  
Minkang Cheng

Abstract. A least squares inversion of Satellite Laser Ranging (SLR) data over Greenland and Antarctica could extend gravimetry-based estimates of mass loss back to the early 1990s, and fill any future gap between the current Gravity Recovery and Climate Experiment (GRACE) and the future GRACE Follow-On mission. The results of a simulation suggest that, while separating the mass change between Greenland and Antarctica is not possible at the limited spatial resolution of the SLR data, estimating the total combined mass change of the two areas is feasible. When the method is applied to real SLR and GRACE gravity series, we find significantly different estimates of inverted mass loss. There are large, unpredictable, interannual differences between the two inverted data types, making us conclude that the current 5 × 5 spherical harmonic SLR series cannot be used to stand in for GRACE. However, a comparison with the longer IMBIE time-series suggests that on a 20-year time-frame, the inverted SLR series' interannual excursions may average out, and the long-term mass loss estimate be reasonable.


2019 ◽  
Vol 11 (8) ◽  
pp. 909 ◽  
Author(s):  
Andreas Richter ◽  
Andreas Groh ◽  
Martin Horwath ◽  
Erik Ivins ◽  
Eric Marderwald ◽  
...  

We use the complete gravity recovery and climate experiment (GRACE) Level-2 monthly time series to derive the ice mass changes of the Patagonian Icefields (Southern Andes). The glacial isostatic adjustment is accounted for by a regional model that is constrained by global navigation satellite systems (GNSS) uplift observations. Further corrections are applied concerning the effect of mass variations in the ocean, in the continental water storage, and of the Antarctic ice sheet. The 161 monthly GRACE gravity field solutions are inverted in the spatial domain through the adjustment of scaling factors applied to a-priori ice mass change patterns based on published remote sensing results for the Southern and Northern Patagonian Icefields, respectively. We infer an ice mass change rate of −24.4 ± 4.7 Gt/a for the Patagonian Icefields between April 2002 and June 2017, which corresponds to a contribution to the eustatic sea level rise of 0.067 ± 0.013 mm/a. Our time series of monthly ice mass changes reveals no indication for an acceleration in ice mass loss. We find indications that the Northern Patagonian Icefield contributes more to the integral ice loss than previously assumed.


2021 ◽  
Vol 13 (7) ◽  
pp. 1242
Author(s):  
Hakan S. Kutoglu ◽  
Kazimierz Becek

The Mediterranean Ridge accretionary complex (MAC) is a product of the convergence of Africa–Europe–Aegean plates. As a result, the region exhibits a continuous mass change (horizontal/vertical movements) that generates earthquakes. Over the last 50 years, approximately 430 earthquakes with M ≥ 5, including 36 M ≥ 6 earthquakes, have been recorded in the region. This study aims to link the ocean bottom deformations manifested through ocean bottom pressure variations with the earthquakes’ time series. To this end, we investigated the time series of the ocean bottom pressure (OBP) anomalies derived from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) satellite missions. The OBP time series comprises a decreasing trend in addition to 1.02, 1.52, 4.27, and 10.66-year periodic components, which can be explained by atmosphere, oceans, and hydrosphere (AOH) processes, the Earth’s pole movement, solar activity, and core–mantle coupling. It can be inferred from the results that the OBP anomalies time series/mass change is linked to a rising trend and periods in the earthquakes’ energy time series. Based on this preliminary work, ocean-bottom pressure variation appears to be a promising lead for further research.


2020 ◽  
Vol 12 (2) ◽  
pp. 314
Author(s):  
José M. Ferrándiz ◽  
Sadegh Modiri ◽  
Santiago Belda ◽  
Mikhail Barkin ◽  
Mathis Bloßfeld ◽  
...  

The location of the Earth’s principal axes of inertia is a foundation for all the theories and solutions of its rotation, and thus has a broad effect on many fields, including astronomy, geodesy, and satellite-based positioning and navigation systems. That location is determined by the second-degree Stokes coefficients of the geopotential. Accurate solutions for those coefficients were limited to the stationary case for many years, but the situation improved with the accomplishment of Gravity Recovery and Climate Experiment (GRACE), and nowadays several solutions for the time-varying geopotential have been derived based on gravity and satellite laser ranging data, with time resolutions reaching one month or one week. Although those solutions are already accurate enough to compute the evolution of the Earth’s axes of inertia along more than a decade, such an analysis has never been performed. In this paper, we present the first analysis of this problem, taking advantage of previous analytical derivations to simplify the computations and the estimation of the uncertainty of solutions. The results are rather striking, since the axes of inertia do not move around some mean position fixed to a given terrestrial reference frame in this period, but drift away from their initial location in a slow but clear and not negligible manner.


2016 ◽  
Vol 50 (3) ◽  
pp. 109-113
Author(s):  
Michael G. Morley ◽  
Marlene A. Jeffries ◽  
Steven F. Mihály ◽  
Reyna Jenkyns ◽  
Ben R. Biffard

AbstractOcean Networks Canada (ONC) operates the NEPTUNE and VENUS cabled ocean observatories to collect continuous data on physical, chemical, biological, and geological ocean conditions over multiyear time periods. Researchers can download real-time and historical data from a large variety of instruments to study complex earth and ocean processes from their home laboratories. Ensuring that the users are receiving the most accurate data is a high priority at ONC, requiring QAQC (quality assurance and quality control) procedures to be developed for a variety of data types (Abeysirigunawardena et al., 2015). Acquiring long-term time series of oceanographic data from remote locations on the seafloor presents significant challenges from a QAQC perspective. In order to identify and study important scientific events and trends, data consolidated from multiple deployments and instruments need to be self-consistent and free of biases due to changes to instrument configurations, calibrations, metadata, biofouling, or a degradation in instrument performance. As a case study, this paper describes efforts at ONC to identify and correct systematic biases in ocean current directions measured by ADCPs (acoustic Doppler current profilers), as well as the lessons learned to improve future data quality.


1988 ◽  
Vol 128 ◽  
pp. 247-255 ◽  
Author(s):  
Clark R. Wilson ◽  
R. O. Vicente

Polar motion data for the period 1981–1985 are used to obtain a combined solution from Doppler, Satellite Laser Ranging, and Astrometric observations. The combined solution is a weighted average of the three series, with weights determined from reported errors which are scaled so that they agree with errors estimated from differences among the various series. The combined solution is effective in removing spurious deviations in the pole path which appear in a single series. However, we also show that estimated errors can be unreliable when derived from short time series, when one series is much less noisy than the others. Thus, a combined solution where weights depend upon estimated errors can yield poor results, and we demonstrate this effect by comparing a combined solution for 1984–85 with the independent IRIS series.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 616
Author(s):  
Stanisław Schillak ◽  
Paweł Lejba ◽  
Piotr Michałek ◽  
Tomasz Suchodolski ◽  
Adrian Smagło ◽  
...  

This paper presents the results of an orbital analysis of satellite laser ranging data performed by the Borowiec SLR station (7811) in the period from July 1993 to December 2019, including the determination of the station positions and velocity. The analysis was performed using the GEODYN-II orbital program for the independent monthly orbital arcs from the results of the LAGEOS-1 and LAGEOS-2 satellites. Each arc was created from the results of the laser observations of a dozen or so selected stations, which were characterized by a large number of normal points and a good quality of observations. The geocentric and topocentric coordinates of the station were analyzed. Factors influencing the uncertainty of the measurements were determined: the number of the normal points, the dispersion of the normal points in relation to the orbits, and the long-term stability of the systematic deviations. The position leap at the end of 2002 and its interpretation in ITRF2014 were analyzed. The 3D stability of the determined positions throughout the period of study was equal to 12.7 mm, with the uncertainty of determination being at the level of 4.3 mm. A very high compliance of the computed velocity of the Borowiec SLR station (24.9 mm/year) with ITRF2014 (25.0 mm/year) was found.


Sign in / Sign up

Export Citation Format

Share Document