scholarly journals Contribution of calving to frontal ablation quantified from seismic and hydroacoustic observations calibrated with lidar volume measurements

2019 ◽  
Vol 13 (11) ◽  
pp. 3117-3137 ◽  
Author(s):  
Andreas Köhler ◽  
Michał Pętlicki ◽  
Pierre-Marie Lefeuvre ◽  
Giuseppa Buscaino ◽  
Christopher Nuth ◽  
...  

Abstract. Frontal ablation contributes significantly to the mass balance of tidewater glaciers in Svalbard and can be recovered with high temporal resolution using continuous seismic records. Determination of the relative contribution of dynamic ice loss through calving to frontal ablation requires precise estimates of calving volumes at the same temporal resolution. We combine seismic and hydroacoustic observations close to the calving front of Kronebreen, a marine-terminating glacier in Svalbard, with repeat lidar scanning of the glacier front. Simultaneous time-lapse photography is used to assign volumes measured from lidar scans to seismically detected calving events. Empirical models derived from signal properties such as integrated amplitude are able to replicate volumes of individual calving events and cumulative subaerial ice loss over different lidar scan intervals from seismic and hydroacoustic data alone. This enables quantification of the contribution of calving to frontal ablation, which we estimate for Kronebreen to be about 18 %–30 %, slightly below the subaerially exposed area of the glacier front. We further develop a model calibrated for the permanent seismic Kings Bay station (KBS) at about 15 km distance from the glacier front, where 15 %–60 % of calving events can be detected under variable noise conditions due to reduced signal amplitudes at distance. Between 2007 and 2017, we find a 5 %–30 % contribution of calving ice blocks to frontal ablation, which emphasizes the importance of underwater melting (roughly 4–9 m d−1). This study shows the feasibility to seismically monitor not only frontal ablation rates but also the dynamic ice loss contribution continuously and at high temporal resolution.

2019 ◽  
Author(s):  
Andreas Köhler ◽  
Michał Pętlicki ◽  
Pierre-Marie Lefeuvre ◽  
Giuseppa Buscaino ◽  
Christopher Nuth ◽  
...  

Abstract. Frontal ablation contributes significantly to the mass balance of tidewater glaciers in Svalbard and can be recovered with high temporal resolution using continuous seismic records. Determination of the relative contribution of dynamic ice loss through calving to frontal ablation requires precise estimates of calving volumes at the same temporal resolution. We combine seismic and hydroacoustic observations close to the calving front of Kronebreen, a marine terminating glacier in Svalbard, with repeat lidar scanning of the glacier front. Simultaneous time-lapse photography is used to assign volumes measured from lidar scans to seismically detected calving events. Empirical models derived from signal properties such as integrated amplitude are able to replicate volumes of individual calving events and cumulative subaerial ice loss over different lidar scan intervals from seismic and hydroacoustic data alone. This enables quantification of the contribution of calving to frontal ablation, which we estimate for Kronebreen to be about 18–30 %, slightly below the subaerially exposed area of the glacier front. We further develop a model calibrated for the permanent seismic station KBS at about 15 km distance from the glacier front, where 15–60 % of calving events can be detected under variable noise conditions due to reduced signal amplitudes at distance. Between 2007 and 2017, we find a 5–30 % contribution of calving ice blocks to frontal ablation which emphasizes the importance of underwater melting (roughly 150–350 m a−1). This study shows the feasibility to seismically monitor not only frontal ablation rates but also its dynamic ice loss contribution continuously and at high temporal resolution.


2021 ◽  
Author(s):  
Dominik Fahrner ◽  
James Lea ◽  
Stephen Brough ◽  
Jakob Abermann

<p>Greenland’s tidewater glaciers (TWG) have been retreating since the mid-1990s, contributing to mass loss from the Greenland Ice Sheet and sea level rise. Satellite imagery has been widely used to investigate TWG behaviour and determine the response of TWGs to climate. However, multi-day revisit times make it difficult to determine short-term processes such as calving and shorter-term velocity changes that may condition this. </p><p>Here we present velocity, calving and proglacial plume data derived from hourly time-lapse images of Narsap Sermia, SW Greenland for the period July 2017 to June 2020 (n=13,513). Raw images were orthorectified using the <em>Image GeoRectification And Feature Tracking toolbox</em> (ImGRAFT; Messerli & Grinsted, 2015) using a smoothed ArcticDEM tile from 2016 (RMSE=44.4px). TWG flow velocities were determined using ImGRAFT feature tracking, with post-processing adjusting for varying time intervals between image acquisitions (if >1 hour) and removing outliers (>x2 mean). The high temporal resolution of the imagery also enabled the manual mapping of proglacial plume sizes from the orthorectified images and the recording of individual calving events by visually comparing images.</p><p>Results show a total retreat of approximately 700 m, with a general velocity increase from ~15 m/d to ~20 m/d over the investigated time period and highly variable hourly velocities (±12m/d). The number of calving events and plume sizes remain relatively stable from year to year throughout the observation period. However, later in the record plumes appear earlier in the year and the size of calved icebergs increases significantly, which suggests a change in calving behaviour. </p>


2019 ◽  
Vol 60 (78) ◽  
pp. 20-31 ◽  
Author(s):  
Penelope How ◽  
Kristin M. Schild ◽  
Douglas I. Benn ◽  
Riko Noormets ◽  
Nina Kirchner ◽  
...  

AbstractWe present a highly detailed study of calving dynamics at Tunabreen, a tidewater glacier in Svalbard. A time-lapse camera was trained on the terminus and programmed to capture images every 3 seconds over a 28-hour period in August 2015, producing a highly detailed record of 34 117 images from which 358 individual calving events were distinguished. Calving activity is characterised by frequent events (12.8 events h−1) that are small relative to the spectrum of calving events observed, demonstrating the prevalence of small-scale calving mechanisms. Five calving styles were observed, with a high proportion of calving events (82%) originating at, or above, the waterline. The tidal cycle plays a key role in the timing of calving events, with 68% occurring on the falling limb of the tide. Calving activity is concentrated where meltwater plumes surface at the glacier front, and a ~ 5 m undercut at the base of the glacier suggests that meltwater plumes encourage melt-under-cutting. We conclude that frontal ablation at Tunabreen may be paced by submarine melt rates, as suggested from similar observations at glaciers in Svalbard and Alaska. Using submarine melt rate to calculate frontal ablation would greatly simplify estimations of tidewater glacier losses in prognostic models.


2016 ◽  
Vol 57 (72) ◽  
pp. 118-127 ◽  
Author(s):  
Kristin M. Schild ◽  
Robert L. Hawley ◽  
Blaine F. Morriss

ABSTRACTMarine-terminating outlet glaciers discharge most of the Greenland ice sheet's mass through frontal ablation and meltwater runoff. While calving can be estimated by in situ and remote sensing observations, submarine melting and subglacial meltwater transport are more challenging to quantify. Here we investigate the subglacial hydrology of Rink Isbræ, a fast-flowing West Greenland tidewater glacier, using time-lapse photography, modeled runoff estimates and daily satellite imagery from 2007 to 2011. We find that sediment plumes appear episodically at four distinct locations across the terminus, and last between 2 h and 17 d. This suggests short-term variability in discharge and the existence of persistent pathways. The seasonal onset of sediment plumes occurs before supraglacial lake drainages, shortly after the onset of runoff, and only after the wintertime ice mélange has begun disintegrating. Plumes were also visible after the cessation of runoff (23 ± 5 d), which is indicative of subglacial storage. The lack of either a seasonal velocity change or a correspondence between meltwater availability and plume occurrence suggests that the subglacial system persists in a state of inefficient drainage. Subglacial hydrology at tidewater glaciers is of critical importance in understanding dynamics at the ice front.


2017 ◽  
Vol 122 (2) ◽  
pp. 1114-1131 ◽  
Author(s):  
Jake J. Gristey ◽  
J. Christine Chiu ◽  
Robert J. Gurney ◽  
Shin-Chan Han ◽  
Cyril J. Morcrette

2020 ◽  
pp. 1-10
Author(s):  
Charlie Bunce ◽  
Peter Nienow ◽  
Andrew Sole ◽  
Tom Cowton ◽  
Benjamin Davison

Abstract Frontal ablation from tidewater glaciers is a major component of the total mass loss from the Greenland ice sheet. It remains unclear, however, how changes in atmospheric and oceanic temperatures translate into changes in frontal ablation, in part due to sparse observations at sufficiently high spatial and temporal resolution. We present high-frequency time-lapse imagery (photos every 30 min) of iceberg calving and meltwater plumes at Kangiata Nunaata Sermia (KNS), southwest Greenland, during June–October 2017, alongside satellite-derived ice velocities and modelled subglacial discharge. Early in the melt season, we infer a subglacial hydrological network with multiple outlets that would theoretically distribute discharge and enhance undercutting by submarine melt, an inference supported by our observations of terminus-wide calving during this period. During the melt season, we infer hydraulic evolution to a relatively more channelised subglacial drainage configuration, based on meltwater plume visibility indicating focused emergence of subglacial water; these observations coincide with a reduction in terminus-wide calving and transition to an incised planform terminus geometry. We suggest that temporal variations in subglacial discharge and near-terminus subglacial hydraulic efficiency exert considerable influence on calving and frontal ablation at KNS.


2019 ◽  
Author(s):  
Marco Bongio ◽  
Ali Nadir Arslan ◽  
Cemal Melih Tanis ◽  
Carlo De Michele

Abstract. We explored the potentiality of time-lapse photography method to estimate the snow depth in boreal forested and alpine regions. Historically, the snow depth has been measured manually by rulers or snowboards, with a temporal resolution of once per day, and a time-consuming activity. In the last decades, ultrasonic and/or optical sensors have been developed to obtain automatic measurements with higher temporal resolution and accuracy, defining a network of sensors within each country. The Finnish Meteorological Institute Image processing tool (FMIPROT) is used to retrieve the snow depth from images of a snow stake on the ground collected by cameras. An “ad-hoc” algorithm based on the brightness difference between snowpack and stake’s markers has been developed. We illustrated three case studies (case study 1-Sodankylä Peatland, case study 2-Gressoney la Trinitè Dejola, and case study 3-Careser dam) to highlight potentialities and pitfalls of the method. The proposed method provides, respect to the existing methods, new possibilities and advantages in the estimation of snow depth, which can be summarized as follows: 1) retrieving the snow depth at high temporal resolution, and an accuracy comparable to the most common method (manual measurements); 2) errors or misclassifications can be identified simply with a visual observation of the images; 3) estimating the spatial variability of snow depth by placing more than one snow stake on the camera’s view; 4) concerning the well-known under catch problem of instrumental pluviometer, occurring especially in mountain regions, the snow water equivalent can be corrected using high-temporal digital images; 5) the method enables retrieval of snow depth in avalanche, dangerous and inaccessible sites, where there is in general a lack of data; 6) the method is cheap, reliable, flexible and easily extendible in different environments and applications. We analyzed cases in which this method can fail due to poor visibility conditions or obstruction on the camera’s view. Defining a simple procedure based on ensemble of simulations and a post processing correction we can reproduce a snow depth time series without biases. Root Mean Square Errors (RMSE) and Nash Sutcliffe Efficiency (NSE) are calculated for all three case studies comparing with both estimates from the FMIPROT and visual observations of images. For the case studies, we found NSE = 0.917 , 0.963, 0.916 respectively for Sodankylä, Gressoney and Careser. In terms of accuracy, the first case study gave better results (RMSE equal to 3.951 · 10−2 m, 5.242 · 10−2 m, 10.78 · 10−2 m, respectively). The worst performances occurred at Careser dam located at 2600 m a.s.l. where extreme weather conditions occur, strongly affecting the clarity of the images. For Sodankylä case study, we showed that the proposed method can improve the measurements obtained by a Campbell snow depth ultrasonic sensor. According to results, we provided also useful information about the proper geometrical configuration stake-camera and the related parameters, which allow to retrieve reliable snow depth time series.


2021 ◽  
Vol 15 (1) ◽  
pp. 369-387
Author(s):  
Marco Bongio ◽  
Ali Nadir Arslan ◽  
Cemal Melih Tanis ◽  
Carlo De Michele

Abstract. The capability of time-lapse photography to retrieve snow depth time series was tested. Historically, snow depth has been measured manually by rulers, with a temporal resolution of once per day, and it is a time-consuming activity. In the last few decades, ultrasonic and/or optical sensors have been developed to obtain automatic and regular measurements with higher temporal resolution and accuracy. The Finnish Meteorological Institute Image Processing Toolbox (FMIPROT) has been used to retrieve the snow depth time series from camera images of a snow stake on the ground by implementing an algorithm based on the brightness difference and contour detection. Three case studies have been illustrated to highlight potentialities and pitfalls of time-lapse photography in retrieving the snow depth time series: Sodankylä peatland, a boreal forested site in Finland, and Gressoney-La-Trinité Dejola and Careser Dam, two alpine sites in Italy. This study presents new possibilities and advantages in the retrieval of snow depth in general and snow depth time series specifically, which can be summarized as follows: (1) high temporal resolution – hourly or sub-hourly time series, depending on the camera's scan rate; (2) high accuracy levels – comparable to the most common method (manual measurements); (3) reliability and visual identification of errors or misclassifications; (4) low-cost solution; and (5) remote sensing technique – can be easily extended in remote and dangerous areas. The proper geometrical configuration between camera and stake, highlighting the main characteristics which each single component must have, has been proposed. Root mean square errors (RMSEs) and Nash–Sutcliffe efficiencies (NSEs) were calculated for all three case studies comparing with estimates from both the FMIPROT and visual inspection of images directly. The NSE values were 0.917, 0.963 and 0.916, while RMSEs were 0.039, 0.052 and 0.108 m for Sodankylä, Gressoney and Careser, respectively. In terms of accuracy, the Sodankylä case study gave better results. The worst performances occurred at Careser Dam located at 2600 m a.s.l., where extreme weather conditions and a low temporal resolution of the camera occur, strongly affecting the clarity of the images.


Sign in / Sign up

Export Citation Format

Share Document