Review of manuscript “Sea ice diffusion in the Arctic ice pack: a comparison between observed buoy trajectories and the neXtSIM and TOPAZ-CICE sea ice models” by Rampal et al.

2016 ◽  
Author(s):  
Anonymous
Keyword(s):  
Sea Ice ◽  
2020 ◽  
Author(s):  
Kent Moore ◽  
Stephen Howell ◽  
Mike Brady ◽  
Xiaoyong Xu ◽  
Kaitlin McNeil

<p>The ice arches that usually develop at the northern and southern ends of Nares Strait play an important role in modulating the export of multi-year sea ice out of the Arctic Ocean.   As a result of global warming, the Arctic Ocean is evolving towards an ice pack that is younger, thinner and more mobile and the fate of its multi-year ice is becoming of increasing interest to both the scientific and policy communities.  Here, we use sea ice motion retrievals derived from Sentinel-1 imagery to report on recent behaviour of these ice arches and the associated ice flux. In addition to the previously identified early collapse of the northern ice arch in May 2017, we report that this arch failed to develop during the winters of 2018 and 2019.  In contrast, we report that the southern ice arch was only present for a short period of time during the winter of 2018.  We also show that the duration of arch formation has decreased over the past 20 years as ice in the region has thinned, while the ice area and volume fluxes have both increased.  These results suggest that a transition is underway towards a state where the formation of these arches will become atypical with a concomitant increase in the export of multi-year ice accelerating the transition towards a younger and thinner Arctic ice pack.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
G. W. K. Moore ◽  
S. E. L. Howell ◽  
M. Brady ◽  
X. Xu ◽  
K. McNeil

AbstractThe ice arches that usually develop at the northern and southern ends of Nares Strait play an important role in modulating the export of Arctic Ocean multi-year sea ice. The Arctic Ocean is evolving towards an ice pack that is younger, thinner, and more mobile and the fate of its multi-year ice is becoming of increasing interest. Here, we use sea ice motion retrievals from Sentinel-1 imagery to report on the recent behavior of these ice arches and the associated ice fluxes. We show that the duration of arch formation has decreased over the past 20 years, while the ice area and volume fluxes along Nares Strait have both increased. These results suggest that a transition is underway towards a state where the formation of these arches will become atypical with a concomitant increase in the export of multi-year ice accelerating the transition towards a younger and thinner Arctic ice pack.


2021 ◽  
Author(s):  
David Babb ◽  
David Barber ◽  
Jens Ehn ◽  
Wayne Chan ◽  
Lisa Mathes ◽  
...  

<p>As the Arctic ice cover has transitioned to a younger and thinner state it has become weaker and therefore increasingly mobile. One of the key indicators of this change is the increase in ice flux through Nares Strait, which connects the central Arctic to Baffin Bay and is an export pathway for some of the oldest and thickest sea ice remaining within the Arctic. Historically ice flux through the narrow Strait was seasonally limited by the formation of an ice arch, however as the ice cover has thinned the arch no longer forms every winter, and when it does form it tends to break up earlier. An increase in ice flux through Nares Strait not only affects the retention of old thick ice within the central Arctic, but also affects the icescape downstream of the Strait that extends from Baffin Bay, through the Labrador Sea and towards the southern ice edge around Newfoundland. While an ice cover does form annually around Newfoundland, it is typically a thin seasonal ice cover, which forms in January and is gone by May. However, during spring 2017 the ice conditions were considerably heavier, presenting hazardous conditions for the local maritime industry into June and requiring the Canadian Coast Guard research ice breaker Amundsen be pulled off of its scientific cruise and used to escort vessels and conduct search and rescue operations along Newfoundland’s northeast coast. The ice cover was considerably thicker and more extensive than previous years and sank two fishing vessels that became beset within the ice pack. Using a unique suite of in situ observations we confirmed that multiyear sea ice from the central Arctic was present within this anomalous ice cover. Using satellite imagery and regional ice charts we tracked the source of this multiyear ice back to Nares Strait and the central Arctic. While regional in focus, this work highlights how the decline of the Arctic ice pack has implications for downstream areas where risk may be increasing as the ice pack declines.</p>


2021 ◽  
Author(s):  
Detelina Ivanova ◽  
Subarna Bhattacharyya ◽  
Leslie Field ◽  
Velimir Mlaker ◽  
Anthony Strawa ◽  
...  

Abstract We present a modeling study of the sensitivity of present-day Arctic climate dynamics to increases in sea ice albedo in the Fram Strait. Our analysis reveals a new mechanism whereby enhancing the albedo in the Fram Strait triggers a transition of the regional atmospheric dynamics to a negative Arctic Dipole Anomaly phase. This causes an Arctic-wide ice circulation regime, weakening Transpolar Drift and reducing Fram Strait ice export, leading to thickening of the multi-year ice pack. These findings advance our understanding of the key role that the Fram Strait plays in the Arctic climate and highlights a potential path to restoring Arctic sea ice.


2010 ◽  
Vol 4 (3) ◽  
pp. 1433-1448
Author(s):  
A. Chmel ◽  
V. Smirnov ◽  
A. Panov

Abstract. Mechanical processes in the Arctic ice pack result in fragmented sea ice cover, the regular geometry of which could be described in main features in terms of the conventional mechanics. However, the size distribution of sea ice floes does not exhibit the random (poissonian-like) statistics and follows the power law typical for self-similar (fractal) structures. The analysis of ice floe oscillations in the frequency range specific for cracking, shearing and stick-slip motion evidences the self-organized dynamics of sea ice fracturing, which manifests itself in scaling distributions of both the discrete energy discharges in fracture events and the recurrence times between that one. So determined space-time-energy self-similarity characterises the ice pack as the non-equilibrium, nonlinear thermodynamic system where the synergic relations are established through conventional long propagating wave/oscillations. The presented experimental data were collected at the Russian ice-research camp "North Pole 35" drifting on the Arctic ice pack in 2008.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
A. Chmel ◽  
V. Smirnov

The ice floe speed variations were monitored at the research camp North Pole 35 established on the Arctic ice pack in 2008. A three-month time series of measured speed values was used for determining changes in the kinetic energy of the drifting ice floe. The constructed energy distributions were analyzed by methods of nonextensive statistical mechanics based on the Tsallis statistics for open nonequilibrium systems, such as tectonic formations and drifting sea ice. The nonextensivity means the nonadditivity of externally induced energy changes in multicomponent systems due to dynamic interrelation of components having no structural links. The Tsallis formalism gives one an opportunity to assess the correlation between ice floe motions through a specific parameter, the so-called parameter of nonextensivity. This formalistic assessment of the actual state of drifting pack allows one to forecast some important trends in sea ice behavior, because the level of correlated dynamics determines conditions for extended mechanical perturbations in ice pack. In this work, we revealed temporal fluctuations of the parameter of nonextensivity and observed its maximum value before a large-scale sea ice fragmentation (faulting) of consolidated sea ice. The correlation was not detected in fragmented sea ice where long-range interactions are weakened.


2002 ◽  
Vol 34 ◽  
pp. 420-428 ◽  
Author(s):  
Josefino C. Comiso

AbstractCo-registered and continuous satellite data of sea-ice concentrations and surface ice temperatures from 1981 to 2000 are analyzed to evaluate relationships between these two critical climate parameters and what they reveal in tandem about the changing Arctic environment. During the 19 year period, the Arctic ice extent and actual ice area are shown to be declining at a rate of –2.0±0.3% dec –1 and 3.1 ±0.4% dec–1, respectively, while the surface ice temperature has been increasing at 0.4 ±0.2 K dec–1, where dec is decade. The extent and area of the perennial ice cover, estimated from summer minimum values, have been declining at a much faster rate of –6.7±2.4% dec–1 and –8.3±2.4% dec–1, respectively, while the surface ice temperature has been increasing at 0.9 ±0.6K dec–1. This unusual rate of decline is accompanied by a very variable summer ice cover in the 1990s compared to the 1980s, suggesting increases in the fraction of the relatively thin second-year, and hence a thinning in the perennial, ice cover during the last two decades. Yearly anomaly maps show that the ice-concentration anomalies are predominantly positive in the 1980s and negative in the 1990s, while surface temperature anomalies were mainly negative in the 1980s and positive in the 1990s. The yearly ice-concentration and surface temperature anomalies are highly correlated, indicating a strong link especially in the seasonal region and around the periphery of the perennial ice cover. The surface temperature anomalies also reveal the spatial scope of each warming (or cooling) phenomenon that usually extends beyond the boundaries of the sea-ice cover.


2018 ◽  
Author(s):  
John E. Walsh ◽  
J. Scott Stewart ◽  
Florence Fetterer

Abstract. Basic statistical metrics such as autocorrelations and across-region lag correlations of sea ice variations provide benchmarks for the assessments of forecast skill achieved by other methods such as more sophisticated statistical formulations, numerical models, and heuristic approaches. However, the strong negative trend of sea ice coverage in recent decades complicates the evaluation of statistical skill by inflating the correlation of interannual variations of pan-Arctic and regional ice extent. In this study we provide a quantitative evaluation of the contribution of the trend to the predictive skill of monthly and seasonal ice extent on the pan-Arctic and regional scales. We focus on the Beaufort Sea where the Barnett Severity Index provides a metric of historical variations in ice conditions over the summer shipping season. The variance about the trend line differs little among various methods of detrending (piecewise linear, quadratic, cubic, exponential). Application of the piecewise linear trend calculation indicates an acceleration of the trend during the 1990s in most of the Arctic subregions. The Barnett Severity Index as well as September pan-Arctic ice extent show significant statistical predictability out to several seasons when the data include the trend. However, this apparent skill largely vanishes when the data are detrended. No region shows significant correlation with the detrended September pan-Arctic ice extent at lead times greater than a month or two; the concurrent correlations are strongest with the East Siberian Sea. The Beaufort Sea’s ice extent as far back as July explains about 20 % of the variance of the Barnett Severity Index, which is primarily a September metric. The Chukchi Sea is the only other region showing a significant association with the Barnett Severity Index, although only at a lead time of a month or two.


Sign in / Sign up

Export Citation Format

Share Document