Review of the manuscript "Satellite-derived sea-ice export and its impact on Arctic ice mass balance" by Ricker et al. submitted to The Cryosphere.

2018 ◽  
Author(s):  
Anonymous
2019 ◽  
Author(s):  
Alex West ◽  
Mat Collins ◽  
Ed Blockley

Abstract. Arctic sea ice has declined rapidly over recent decades. Models predict that the Arctic will be nearly ice-free by mid-century, but the spread in predictions of sea ice extent is currently large. The reasons for this spread are poorly understood, partly due to a lack of observations with which the processes by which Arctic atmospheric and oceanic forcing affect sea ice state can be examined. In this study, a method of estimating fluxes of top melt, top conduction, basal conduction and ocean heat flux from Arctic ice mass balance buoy elevation and temperature data is presented. The derived fluxes are used to evaluate modelled fluxes from the coupled climate model HadGEM2-ES in two densely sampled regions of the Arctic, the North Pole and Beaufort Sea. The evaluation shows the model to overestimate the magnitude of summer top melting fluxes, and winter conductive fluxes, results which are physically consistent with an independent sea ice and surface energy evaluation of the same model.


2018 ◽  
Vol 12 (9) ◽  
pp. 3017-3032 ◽  
Author(s):  
Robert Ricker ◽  
Fanny Girard-Ardhuin ◽  
Thomas Krumpen ◽  
Camille Lique

Abstract. Sea ice volume export through the Fram Strait represents an important freshwater input to the North Atlantic, which could in turn modulate the intensity of the thermohaline circulation. It also contributes significantly to variations in Arctic ice mass balance. We present the first estimates of winter sea ice volume export through the Fram Strait using CryoSat-2 sea ice thickness retrievals and three different ice drift products for the years 2010 to 2017. The monthly export varies between −21 and −540 km3. We find that ice drift variability is the main driver of annual and interannual ice volume export variability and that the interannual variations in the ice drift are driven by large-scale variability in the atmospheric circulation captured by the Arctic Oscillation and North Atlantic Oscillation indices. On shorter timescale, however, the seasonal cycle is also driven by the mean thickness of exported sea ice, typically peaking in March. Considering Arctic winter multi-year ice volume changes, 54  % of their variability can be explained by the variations in ice volume export through the Fram Strait.


2018 ◽  
Author(s):  
Robert Ricker ◽  
Fanny Girard-Ardhuin ◽  
Thomas Krumpen ◽  
Camille Lique

Abstract. Ice volume export drives variations of Arctic ice mass balance. It also represents a significant fresh water input to the North Atlantic, which could in turn modulate the intensity of the thermohaline circulation. We present the first estimates of winter sea ice volume export through the Fram Strait using CryoSat-2 sea ice thickness retrievals and three different drift products for the years 2010 to 2017. The export rates vary between −21 and −540 km3/month. We find that ice drift variability is the main driver of annual and interannual ice volume export variability, and that the interannual variations of the ice drift are driven by large scale variability of the atmospheric circulation captured by the Arctic Oscillation and North Atlantic Oscillation indices. On shorter timescale, however, the seasonal cycle is also driven by the mean thickness of exported sea ice, typically peaking in March. Considering Arctic winter multiyear ice volume changes, 54 % of the variability can be explained by the variations of ice volume export through the Fram Strait.


2020 ◽  
Vol 13 (10) ◽  
pp. 4845-4868
Author(s):  
Alex West ◽  
Mat Collins ◽  
Ed Blockley

Abstract. A new method of sea ice model evaluation is demonstrated. Data from the network of Arctic ice mass balance buoys (IMBs) are used to estimate distributions of vertical energy fluxes over sea ice in two densely sampled regions – the North Pole and Beaufort Sea. The resulting dataset captures seasonal variability in sea ice energy fluxes well, and it captures spatial variability to a lesser extent. The dataset is used to evaluate a coupled climate model, HadGEM2-ES (Hadley Centre Global Environment Model, version 2, Earth System), in the two regions. The evaluation shows HadGEM2-ES to simulate too much top melting in summer and too much basal conduction in winter. These results are consistent with a previous study of sea ice state and surface radiation in this model, increasing confidence in the IMB-based evaluation. In addition, the IMB-based evaluation suggests an additional important cause for excessive winter ice growth in HadGEM2-ES, a lack of sea ice heat capacity, which was not detectable in the earlier study. Uncertainty in the IMB fluxes caused by imperfect knowledge of ice salinity, snow density and other physical constants is quantified (as is inaccuracy due to imperfect sampling of ice thickness) and in most cases is found to be small relative to the model biases discussed. Hence the IMB-based evaluation is shown to be a valuable tool with which to analyse sea ice models and, by extension, better understand the large spread in coupled model simulations of the present-day ice state. Reducing this spread is a key task both in understanding the current rapid decline in Arctic sea ice and in constraining projections of future Arctic sea ice change.


2011 ◽  
Vol 52 (57) ◽  
pp. 271-278 ◽  
Author(s):  
Katherine C. Leonard ◽  
Ted Maksym

AbstractSnow distribution is a dominating factor in sea-ice mass balance in the Bellingshausen Sea, Antarctica, through its roles in insulating the ice and contributing to snow-ice production. the wind has long been qualitatively recognized to influence the distribution of snow accumulation on sea ice, but the relative importance of drifting and blowing snow has not been quantified over Antarctic sea ice prior to this study. the presence and magnitude of drifting snow were monitored continuously along with wind speeds at two sites on an ice floe in the Bellingshausen Sea during the October 2007 Sea Ice Mass Balance in the Antarctic (SIMBA) experiment. Contemporaneous precipitation measurements collected on board the RVIB Nathaniel B. Palmer and accumulation measurements by automated ice mass-balance buoys (IMBs) allow us to document the proportion of snowfall that accumulated on level ice surfaces in the presence of high winds and blowing-snow conditions. Accumulation on the sea ice during the experiment averaged <0.01 m w.e. at both IMB sites, during a period when European Centre for Medium-Range Weather Forecasts analyses predicted >0.03 m w.e. of precipitation on the ice floe. Accumulation changes on the ice floe were clearly associated with drifting snow and high winds. Drifting-snow transport during the SIMBA experiment was supply-limited. Using these results to inform a preliminary study using a blowing-snow model, we show that over the entire Southern Ocean approximately half of the precipitation over sea ice could be lost to leads.


2020 ◽  
Author(s):  
Caixin Wang ◽  
Mats A. Granskog ◽  
Jens Boldingh Debernard ◽  
Keguang Wang

&lt;p&gt;Sea ice is a critical component of the Earth system, playing an important role in high-latitude&lt;br&gt;surface radiation balance and heat, moisture and momentum exchange between atmosphere&lt;br&gt;and ocean. In recent years, rapid changes have been occurring in Arctic sea ice, including&lt;br&gt;decline in ice extent/area, decreasing in ice thickness and volume, and shifting towards a first-&lt;br&gt;year ice (FYI) dominated, rather than multi-year ice (MYI) dominated ice pack. These are one&lt;br&gt;of the most well-known and striking examples of climate change. However, representing&lt;br&gt;these changes in the model is still in question since most of our knowledge is based on MYI.&lt;br&gt;CICE is a sea ice model developed at Los Alamos National Laboratory since 1994. It is&lt;br&gt;widely used to simulate the growth, melt and movement of sea ice, and to resolve the&lt;br&gt;biogeochemical processes. Its column version, Icepack, has been separated from CICE after&lt;br&gt;CICE V5.1.2, which provides additional opportunity for simulating the evolution of drifting&lt;br&gt;sea ice floes. How about the representation of sea ice in a column model (Icepack) and a 3d&lt;br&gt;model (CICE)? In 2012, an ice mass balance buoy (IMB) and a Spectral Radiation Buoy&lt;br&gt;(SRB) were deployed on FYI near the North Pole, and later drifted towards Fram Strait. These&lt;br&gt;buoys collected a complete summer melt season of in-band (350-800 nm) spectral solar&lt;br&gt;radiation and sea ice mass balance data. In this study, we apply the Icepack (version 1.1.1)&lt;br&gt;and CICE (version 5.1.2) to investigate the seasonal evolution of sea ice in 2012 in these two models, and&lt;br&gt;assess how well the physical processes are represented in CICE and Icepack, with the focus&lt;br&gt;on the surface changes.&lt;/p&gt;


2020 ◽  
Author(s):  
Bin Cheng ◽  
Timo Vihma ◽  
Zeling Liao ◽  
Ruibo Lei ◽  
Mario Hoppmann ◽  
...  

&lt;p&gt;A thermistor-string-based Snow and Ice Mass Balance Array (SIMBA) has been developed in recent years and used for monitoring snow and ice mass balance in the Arctic Ocean. SIMBA measures vertical environment temperature (ET) profiles through the air-snow-sea ice-ocean column using a thermistor string (5 m long, sensor spacing 2cm). Each thermistor sensor equipped with a small identical heating element. A small voltage was applied to the heating element so that the heat energy liberated in the vicinity of each sensor is the same. The heating time intervals lasted 60 s and 120 s, respectively. The heating temperatures (HT) after these two intervals were recorded. The ET was measured 4 times a day and once per day for the HT.&lt;/p&gt;&lt;p&gt;A total 15 SIMBA buoys have been deployed in the Arctic Ocean during the Chinese National Arctic Research Expedition (CHINARE) 2018 and the Nansen and Amundsen Basins Observational System (NABOS) 2018 field expeditions in late autumn. We applied a recently developed SIMBA algorithm to retrieve snow and ice thickness using SIMBA ET and HT temperature data. We focus particularly on sea ice bottom evolution during Arctic winter.&lt;/p&gt;&lt;p&gt;In mid-September 2018, 5 SIMBA buoys were deployed in the East Siberian Sea (NABOS2018) where snow was in practical zero cm and ice thickness ranged between 1.8 m &amp;#8211; 2.6 m. By the end of May, those SIMBA buoys were drifted in the central Arctic where snow and ice thicknesses were around 0.05m - 0.2m and 2.6m &amp;#8211; 3.2m, respectively. For those 10 SIMBA buoys deployed by the CHINARE2018 in the Chukchi Sea and Canadian Basin, the initial snow and ice thickness were ranged between 0.05m &amp;#8211; 0.1cm and 1.5m &amp;#8211; 2.5m, respectively. &amp;#160;By the end of May, those SIMBA buoys were drifted toward the north of Greenland where snow and ice thicknesses were around 0.2m - 0.3m and 2.0m &amp;#8211; 3.5m, respectively. The ice bottom evolution derived by SIMBA algorithm agrees well with SIMBA HT identified ice-ocean interfaces. We also perform a preliminary investigation of sea ice bottom evolution measured by several SIMBA buoys deployed during the MOSAiC leg1 field campaign in winter 2019/2020.&amp;#160;&amp;#160;&lt;/p&gt;


2021 ◽  
pp. 1-15
Author(s):  
Andrew R. Mahoney ◽  
Kate E. Turner ◽  
Donna D. W. Hauser ◽  
Nathan J. M. Laxague ◽  
Jessica M. Lindsay ◽  
...  

Abstract The inaugural data from the first systematic program of sea-ice observations in Kotzebue Sound, Alaska, in 2018 coincided with the first winter in living memory when the Sound was not choked with ice. The following winter of 2018–19 was even warmer and characterized by even less ice. Here we discuss the mass balance of landfast ice near Kotzebue (Qikiqtaġruk) during these two anomalously warm winters. We use in situ observations and a 1-D thermodynamic model to address three research questions developed in partnership with an Indigenous Advisory Council. In doing so, we improve our understanding of connections between landfast ice mass balance, marine mammals and subsistence hunting. Specifically, we show: (i) ice growth stopped unusually early due to strong vertical ocean heat flux, which also likely contributed to early start to bearded seal hunting; (ii) unusually thin ice contributed to widespread surface flooding. The associated snow ice formation partly offset the reduced ice growth, but the flooding likely had a negative impact on ringed seal habitat; (iii) sea ice near Kotzebue during the winters of 2017–18 and 2018–19 was likely the thinnest since at least 1945, driven by a combination of warm air temperatures and a persistent ocean heat flux.


Sign in / Sign up

Export Citation Format

Share Document