scholarly journals The importance of wind-blown snow redistribution to snow accumulation on Bellingshausen Sea ice

2011 ◽  
Vol 52 (57) ◽  
pp. 271-278 ◽  
Author(s):  
Katherine C. Leonard ◽  
Ted Maksym

AbstractSnow distribution is a dominating factor in sea-ice mass balance in the Bellingshausen Sea, Antarctica, through its roles in insulating the ice and contributing to snow-ice production. the wind has long been qualitatively recognized to influence the distribution of snow accumulation on sea ice, but the relative importance of drifting and blowing snow has not been quantified over Antarctic sea ice prior to this study. the presence and magnitude of drifting snow were monitored continuously along with wind speeds at two sites on an ice floe in the Bellingshausen Sea during the October 2007 Sea Ice Mass Balance in the Antarctic (SIMBA) experiment. Contemporaneous precipitation measurements collected on board the RVIB Nathaniel B. Palmer and accumulation measurements by automated ice mass-balance buoys (IMBs) allow us to document the proportion of snowfall that accumulated on level ice surfaces in the presence of high winds and blowing-snow conditions. Accumulation on the sea ice during the experiment averaged <0.01 m w.e. at both IMB sites, during a period when European Centre for Medium-Range Weather Forecasts analyses predicted >0.03 m w.e. of precipitation on the ice floe. Accumulation changes on the ice floe were clearly associated with drifting snow and high winds. Drifting-snow transport during the SIMBA experiment was supply-limited. Using these results to inform a preliminary study using a blowing-snow model, we show that over the entire Southern Ocean approximately half of the precipitation over sea ice could be lost to leads.

2013 ◽  
Vol 7 (1) ◽  
pp. 709-741 ◽  
Author(s):  
T. Sauter ◽  
M. Möller ◽  
R. Finkelnburg ◽  
M. Grabiec ◽  
D. Scherer ◽  
...  

Abstract. The redistribution of snow by drifting and blowing snow frequently leads to an inhomogeneous snow mass distribution on larger ice caps. Together with the thermodynamic impact of drifting snow sublimation on the lower atmospheric boundary layer, these processes affect the glacier surface mass balance. This study provides a first quantification of snowdrift and sublimation of blowing and drifting snow on Vestfonna ice cap (Svalbard) by using the specifically designed "snow2blow" snowdrift model. The model is forced by atmospheric fields from the Weather Research and Forecasting model and resolves processes on a spatial resolution of 250 m. Comparison with radio-echo soudings and snow-pit measurements show that important local scale processes are resolved by the model and the overall snow accumulation pattern is reproduced. The findings indicate that there is a significant redistribution of snow mass from the interior of the ice cap to the surrounding areas and ice slopes. Drifting snow sublimation of suspended snow is found to be stronger during winter. It is concluded that both processes are strong enough to have a significant impact on glacier mass balance.


2013 ◽  
Vol 7 (4) ◽  
pp. 1287-1301 ◽  
Author(s):  
T. Sauter ◽  
M. Möller ◽  
R. Finkelnburg ◽  
M. Grabiec ◽  
D. Scherer ◽  
...  

Abstract. The redistribution of snow by drifting and blowing snow frequently leads to an inhomogeneous snow mass distribution on larger ice caps. Together with the thermodynamic impact of drifting snow sublimation on the lower atmospheric boundary layer, these processes affect the glacier surface mass balance. This study provides a first quantification of snowdrift and sublimation of blowing and drifting snow on the Vestfonna ice cap (Svalbard) by using the specifically designed snow2blow snowdrift model. The model is forced by atmospheric fields from the Polar Weather Research and Forecasting model and resolves processes on a spatial resolution of 250 m. The model is applied to the Vestfonna ice cap for the accumulation period 2008/2009. Comparison with radio-echo soundings and snow-pit measurements show that important local-scale processes are resolved by the model and the overall snow accumulation pattern is reproduced. The findings indicate that there is a significant redistribution of snow mass from the interior of the ice cap to the surrounding areas and ice slopes. Drifting snow sublimation of suspended snow is found to be stronger during spring. It is concluded that the redistribution process is strong enough to have a significant impact on glacier mass balance.


2008 ◽  
Vol 23 (4) ◽  
pp. 741-751 ◽  
Author(s):  
Qiang Huang ◽  
John Hanesiak ◽  
Sergiy Savelyev ◽  
Tim Papakyriakou ◽  
Peter A. Taylor

Abstract A field study on visibility during Arctic blowing snow events over sea ice in Franklin Bay, Northwest Territories, Canada, was carried out from mid-January to early April 2004 during the Canadian Arctic Shelf Exchange Study (CASES) 2003–04 expedition. Visibilities at two heights, wind and temperature profiles, plus blowing and drifting snow particle flux at several heights were monitored continually during the study period. Good relations between visibility and wind speed were found in individual events of ground blowing snow with coefficients of determination &gt;0.9. Regression equations relating 1.5-m height visibility to 10-m wind speed can be used for predicting visibility with a mean relative error in the range of 19%–32%. Similar regression functions obtained from the data for observed visibility of less than 1 km could predict visibilities more accurately for more extreme visibility reductions and wind speeds (&gt;9.5 m s−1) with mean relative error ranging from 15% to 26%. For the event of ground blowing snow, a simple power law relationship between wind speed and visibility is sufficient for operational purposes. A poorer relationship was observed in the event of blowing snow with concurrent precipitating snow. A theoretical visibility model developed by Pomeroy and Male fit well with observed visibilities if using a mean radius of 50 μm and an alpha value of 10. The predicted visibility had a mean relative error of 30.5% and root-mean-square error of 1.3 km. The observed visibility at 1.5 m had a strong relation with particle counter readings, with an R2 of 0.92, and was consistent among all events.


2015 ◽  
Vol 56 (69) ◽  
pp. 200-210 ◽  
Author(s):  
Stephen F. Ackley ◽  
Hongjie Xie ◽  
Elizabeth A. Tichenor

AbstractWe examine the role of ocean heat flux (OHF) in Antarctic sea-ice growth and melt using data from autonomous ice mass-balance buoys deployed on pack ice in the Bellingshausen Sea and on fast ice in the Amundsen Sea during the spring/summer (October-December 2007) and summer/ autumn (February-March 2009) transitions, respectively. OHFs are derived using two methods that examine changes in (1) sub-ice ocean water properties (OHF1) and (2) ice thickness (OHF2), the latter only applying to thick snow-covered ice (i.e. a near-zero temperature gradient near the ice bottom). Good agreement is found between the time-averaged estimates of OHF1 and OHF2. Average OHF measured was 8 ± 2 W m-2 under the pack ice and 17 ± 2 W m-2 under the landfast ice. Some short-term OHF values (OHF1) in both seas exceeded 55 W m-2. The spring OHF variations in the Bellingshausen Sea were periodic and controlled by semi-diurnal ice velocity fluctuations. Larger temperature fluctuations in the summer Amundsen Sea, originating from incursions of warm deep water masses, contributed to the OHF being twice as high as in the Bellingshausen Sea and also accounted for the irregular OHF variability there.


2014 ◽  
Vol 8 (6) ◽  
pp. 2395-2407 ◽  
Author(s):  
N.-X. Geilfus ◽  
J.-L. Tison ◽  
S. F. Ackley ◽  
R. J. Galley ◽  
S. Rysgaard ◽  
...  

Abstract. Temporal evolution of pCO2 profiles in sea ice in the Bellingshausen Sea, Antarctica, in October 2007 shows physical and thermodynamic processes controls the CO2 system in the ice. During the survey, cyclical warming and cooling strongly influenced the physical, chemical, and thermodynamic properties of the ice cover. Two sampling sites with contrasting characteristics of ice and snow thickness were sampled: one had little snow accumulation (from 8 to 25 cm) and larger temperature and salinity variations than the second site, where the snow cover was up to 38 cm thick and therefore better insulated the underlying sea ice. We show that each cooling/warming event was associated with an increase/decrease in the brine salinity, total alkalinity (TA), total dissolved inorganic carbon (TCO2), and in situ brine and bulk ice CO2 partial pressures (pCO2). Thicker snow covers reduced the amplitude of these changes: snow cover influences the sea ice carbonate system by modulating the temperature and therefore the salinity of the sea ice cover. Results indicate that pCO2 was undersaturated with respect to the atmosphere both in the in situ bulk ice (from 10 to 193 μatm) and brine (from 65 to 293 μatm), causing the sea ice to act as a sink for atmospheric CO2 (up to 2.9 mmol m−2 d−1), despite supersaturation of the underlying seawater (up to 462 μatm).


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jennifer Bruneau ◽  
David Babb ◽  
Wayne Chan ◽  
Sergei Kirillov ◽  
Jens Ehn ◽  
...  

Within the dynamic seasonal ice cover of Hudson Bay, the Kivalliq Polynya is a large latent heat polynya that forms throughout winter in the northwest as a result of strong northwesterly offshore surface winds. Polynyas are known to be physically, biologically, and geochemically important and contribute to the regional ice mass balance; however, the Kivalliq Polynya has yet to be characterized in terms of spatiotemporal variability and ice production. Using a thin ice algorithm applied to the 16-year record of daily AMSR-E and AMSR-2 passive microwave observations, we examine the interannual variability in the spatial and temporal characteristics of the polynya throughout winter (December–April) over the period 2002–2019. Our study reveals that the polynya is present in some form almost every day but that its daily area is highly variable. On average, 182 km3 of new ice is produced in the Kivalliq Polynya during winter, or approximately 20% of the end of winter ice volume in Hudson Bay. Daily ice production is found to be significantly correlated with the daily polynya area, though large, episodic events can increase annual cumulative ice production during a year of otherwise small polynyas. Annual cumulative ice production is also found to be significantly correlated with seasonally averaged offshore wind speeds, which explain 47.3% of the variance in winter ice production and drive a 46 km3 increase in ice production for every 1.0 m s–1 increase in offshore winds. Ultimately, the highly variable yet persistent Kivalliq Polynya is shown to be driven by offshore winds and significantly contributes to the regional ice mass balance.


2006 ◽  
Vol 7 (5) ◽  
pp. 984-994 ◽  
Author(s):  
Konosuke Sugiura ◽  
Tetsuo Ohata ◽  
Daqing Yang

Abstract Intercomparison of solid precipitation measurement at Barrow, Alaska, has been carried out to examine the catch characteristics of various precipitation gauges in high-latitude regions with high winds and to evaluate the applicability of the WMO precipitation correction procedures. Five manual precipitation gauges (Canadian Nipher, Hellmann, Russian Tretyakov, U.S. 8-in., and Wyoming gauges) and a double fence intercomparison reference (DFIR) as an international reference standard have been installed. The data collected in the last three winters indicates that the amount of solid precipitation is characteristically low, and the zero-catch frequency of the nonshielded gauges is considerably high, 60%–80% of precipitation occurrences. The zero catch in high-latitude high-wind regions becomes a significant fraction of the total precipitation. At low wind speeds, the catch characteristics of the gauges are roughly similar to the DFIR, although it is noteworthy that the daily catch ratios decreased more rapidly with increasing wind speed compared to the WMO correction equations. The dependency of the daily catch ratios on air temperature was confirmed, and the rapid decrease in the daily catch ratios is due to small snow particles caused by the cold climate. The daily catch ratio of the Wyoming gauge clearly shows wind-induced losses. In addition, the daily catch ratios are considerably scattered under strong wind conditions due to the influence of blowing snow. This result suggests that it is not appropriate to extrapolate the WMO correction equations for the shielded gauges in high-latitude regions for high wind speed of over 6 m s−1.


2009 ◽  
Vol 27 (1-2) ◽  
pp. 33-53 ◽  
Author(s):  
Martin Vancoppenolle ◽  
Thierry Fichefet ◽  
Hugues Goosse ◽  
Sylvain Bouillon ◽  
Gurvan Madec ◽  
...  

1990 ◽  
Vol 14 ◽  
pp. 352-352 ◽  
Author(s):  
Olav Orheim

Antarctic iceberg observations provide two types of climatic information: (1) the rate of iceberg calving gives the main negative term in the mass balance of Antarctica; (2) the distribution of icebergs in the Southern Ocean is related to various factors including sea-ice extent and ocean conditions. This paper discusses climatic information obtained both from modern iceberg observations, and from historical data.The main modern data source is the international iceberg observation programme, initiated in 1981. This has generated a database which now contains observations of size and position of 150 000 icebergs in the Southern Ocean. Other recent data sources include observations from 1974 of icebergs of over 22 km length by the Navy/NOAA Joint Ice Center (which now total nearly 100 bergs). Historical sources include both scientific and commercial (whaling) expeditions.Three conclusions can be drawn from the recent iceberg data. (1)For the past seven years annual calving rates of icebergs less than 22 km in length have been approximately constant both in numbers and total mass, and have exceeded the annual mean mass of bergs over 22 km calved during the same period.(2)The annually-calved mass of gigantic icebergs of length over 22 km, has varied more than two orders of magnitude during the past two decades. The mass of calved gigantic icebergs alone exceeded continental snow accumulation in 1967, 1986 and 1987.(3)Mean iceberg calving rate exceeds continental snow accumulation rate.These results are discussed in relation to Antarctic mass balance and sea level.Historical observations of iceberg distributions in the Southern Ocean differ from recent observations by showing: (i) higher frequencies of bergs at lower latitudes, (ii) a larger proportion of large bergs, and (iii) a more uniform iceberg distribution throughout the region. Comparisons between past and present distribution patterns indicate that there must be errors, including exaggerations and selective reporting, in the historical data. Such observations should therefore not be used uncritically to make climatic conclusions.Bearing in mind the potential flaws in historical data there still appears to be real variations with time in iceberg distribution. These include higher frequencies of bergs at lower latitudes during the past century and the first decades of this century, than at present. Expanded northern range of the bergs would occur if one or more of the following conditions then applied: (1) calved icebergs were larger; (2) sea ice was more extensive in time and space; (3) ocean temperatures were lower; (4) ocean (wind) conditions were such that northward advection rates were higher. The importance of each of these conditions is discussed.


Sign in / Sign up

Export Citation Format

Share Document