scholarly journals Tree canopy and snow depth relationships at fine scales with terrestrial laser scanning

2020 ◽  
Author(s):  
Ahmad Hojatimalekshah ◽  
Zach Uhlmann ◽  
Nancy F. Glenn ◽  
Christopher A. Hiemstra ◽  
Christopher J. Tennant ◽  
...  

Abstract. Understanding the impact of tree structure on snow depth and extent is important in order to make predictions of snow amounts, and how changes in forest cover may affect future water resources. In this work, we investigate snow depth under tree canopies and in open areas to quantify the role of tree structure in controlling snow depth, as well as the controls from wind and topography. We use fine scale terrestrial laser scanning (TLS) data collected across Grand Mesa, Colorado, USA, to measure the snow depth and extract horizontal and vertical tree descriptors (metrics) at six sites. We apply the Marker-controlled watershed algorithm for individual tree segmentation and measure the snow depth using the Multi-scale Model to Model Cloud Comparison algorithm. Canopy, topography and snow interaction results indicate that vegetation structural metrics (specifically foliage height diversity) along with local scale processes such as wind are highly influential on snow depth variation. Our study specifies that windward slopes show greater impact on snow accumulation than vegetation metrics. In addition, the results emphasize the importance of tree species and distribution on snow depth patterns. Fine scale analysis from TLS provides information on local scale controls, and provides an opportunity to be readily coupled with airborne or spaceborne lidar to investigate larger-scale controls on snow depth.

2020 ◽  
Author(s):  
Maxim Lamare ◽  
Laurent Arnaud ◽  
Ghislain Picard ◽  
Maude Pelletier ◽  
Florent Domine

<p><span>Climate warming induces shrub expansion on Arctic herb tundra, with effects on snow trapping and hence snow depth. We have used UAV-borne LiDAR and Terrestrial Laser Scanning (TLS) to investigate the impact of shrub height on snow depth at two close sites near Umiujaq, eastern Canadian low Arctic, where dwarf birch and willow shrubs are expanding on lichen tundra. The first site features lichen and high shrubs (50-100 cm), a moderate relief, and a snowpack averaging 95 cm in spring. The second site consists of lichen and low shrubs (20-60 cm), more pronounced topography, and a deeper snowpack (101 cm). Digital Terrain and Surface Models were acquired in early fall to obtain topography and vegetation height. A Digital Surface Model obtained in spring produced snow depth maps at peak depth. TLS over a 400 m<sup>2</sup> area produced time series of snow depth throughout the winter. TLS data show preferential snow accumulation in shrubs, but also preferential melting in shrubs during fall warm spells and in spring. UAV data at the first site show a strong correlation between vegetation height and snow depth, even after snow depth has exceeded vegetation height. This correlation is not observed at the second site, probably because snow depth there is much greater than vegetation height. These data show the need to reconsider some paradigms on snow-vegetation interactions, for example that vegetation does not affect snow accumulation beyond its height. </span></p>


2013 ◽  
Vol 54 (62) ◽  
pp. 273-281 ◽  
Author(s):  
Kjetil Melvold ◽  
Thomas Skaugen

AbstractThis study presents results from an Airborne Laser Scanning (ALS) mapping survey of snow depth on the mountain plateau Hardangervidda, Norway, in 2008 and 2009 at the approximate time of maximum snow accumulation during the winter. The spatial extent of the survey area is >240 km2. Large variability is found for snow depth at a local scale (2 m2), and similar spatial patterns in accumulation are found between 2008 and 2009. The local snow-depth measurements were aggregated by averaging to produce new datasets at 10, 50, 100, 250 and 500 m2 and 1 km2 resolution. The measured values at 1 km2 were compared with simulated snow depth from the seNorge snow model (www.senorge.no), which is run on a 1 km2 grid resolution. Results show that the spatial variability decreases as the scale increases. At a scale of about 500 m2 to 1 km2 the variability of snow depth is somewhat larger than that modeled by seNorge. This analysis shows that (1) the regional-scale spatial pattern of snow distribution is well captured by the seNorge model and (2) relatively large differences in snow depth between the measured and modeled values are present.


Author(s):  
Cornelis Stal ◽  
Jeffrey Verbeurgt ◽  
Lars De Sloover ◽  
Alain De Wulf

Abstract Sustainable forest management heavily relies on the accurate estimation of tree parameters. Among others, the diameter at breast height (DBH) is important for extracting the volume and mass of an individual tree. For systematically estimating the volume of entire plots, airborne laser scanning (ALS) data are used. The estimation model is frequently calibrated using manual DBH measurements or static terrestrial laser scans (STLS) of sample plots. Although reliable, this method is time-consuming, which greatly hampers its use. Here, a handheld mobile terrestrial laser scanning (HMTLS) was demonstrated to be a useful alternative technique to precisely and efficiently calculate DBH. Different data acquisition techniques were applied at a sample plot, then the resulting parameters were comparatively analysed. The calculated DBH values were comparable to the manual measurements for HMTLS, STLS, and ALS data sets. Given the comparability of the extracted parameters, with a reduced point density of HTMLS compared to STLS data, and the reasonable increase of performance, with a reduction of acquisition time with a factor of 5 compared to conventional STLS techniques and a factor of 3 compared to manual measurements, HMTLS is considered a useful alternative technique.


2015 ◽  
Vol 77 (26) ◽  
Author(s):  
Nurliyana Izzati Ishak ◽  
Md Afif Abu Bakar ◽  
Muhammad Zulkarnain Abdul Rahman ◽  
Abd Wahid Rasib ◽  
Kasturi Devi Kanniah ◽  
...  

This paper presents a novel non-destructive approach for individual tree stem and branch biomass estimation using terrestrial laser scanning data. The study area is located at the Royal Belum Reserved Forest area, Gerik, Perak. Each forest plot was designed with a circular shape and contains several scanning locations to ensure good visibility of each tree. Unique tree signage was located on trees with diameter at breast height (DBH) of 10cm and above.  Extractions of individual trees were done manually and the matching process with the field collected tree properties were relied on the tree signage and tree location as collected by total station. Individual tree stems were reconstructed based on cylinder models from which the total stem volume was calculated. Biomass of individual tree stems was calculated by multiplying stem volume with specific wood density. Biomass of individual was estimated using similar concept of tree stem with the volume estimated from alpha-hull shape. The root mean squared errors (RMSE) of estimated biomass are 50.22kg and 27.20kg for stem and branch respectively. 


2014 ◽  
Vol 10 (3) ◽  
pp. 379-393 ◽  
Author(s):  
J. Revuelto ◽  
J.I. López-Moreno ◽  
C. Azorin-Molina ◽  
J. Zabalza ◽  
G. Arguedas ◽  
...  

Author(s):  
T. Lendzioch ◽  
J. Langhammer ◽  
M. Jenicek

Airborne digital photogrammetry is undergoing a renaissance. The availability of low-cost Unmanned Aerial Vehicle (UAV) platforms well adopted for digital photography and progress in software development now gives rise to apply this technique to different areas of research. Especially in determining snow depth spatial distributions, where repetitive mapping of cryosphere dynamics is crucial. Here, we introduce UAV-based digital photogrammetry as a rapid and robust approach for evaluating snow accumulation over small local areas (e.g., dead forest, open areas) and to reveal impacts related to changes in forest and snowpack. Due to the advancement of the technique, snow depth of selected study areas such as of healthy forest, disturbed forest, succession, dead forest, and of open areas can be estimated at a 1 cm spatial resolution. The approach is performed in two steps: 1) developing a high resolution Digital Elevation Model during snow-free and 2) during snow-covered conditions. By substracting these two models the snow depth can be accurately retrieved and volumetric changes of snow depth distribution can be achieved. This is a first proof-of-concept study combining snow depth determination and Leaf Area Index (LAI) retrieval to monitor the impact of forest canopy metrics on snow accumulation in coniferous forest within the Šumava National Park, Czech Republic. Both, downward-looking UAV images and upward-looking LAI-2200 canopy analyser measurements were applied to reveal the LAI, controlling interception and transmitting radiation. For the performance of downward-looking images the snow background instead of the sky fraction was used. In contrast to the classical determination of LAI by hemispherical photography or by LAI plant canopy analyser, our approach will also test the accuracy of LAI measurements by UAV that are taken simultaneously during the snow cover mapping campaigns. Since the LAI parameter is important for snowpack modelling, this method presents the potential of simplifying LAI retrieval and mapping of snow dynamics while reducing running costs and time.


Silva Fennica ◽  
2014 ◽  
Vol 48 (2) ◽  
Author(s):  
Anssi Krooks ◽  
Sanna Kaasalainen ◽  
Ville Kankare ◽  
Marianna Joensuu ◽  
Pasi Raumonen ◽  
...  

2021 ◽  
Author(s):  
Moritz Buchmann ◽  
Michael Begert ◽  
Stefan Brönnimann ◽  
Christoph Marty

Abstract. Measurements of snow depth and snowfall on the daily scale can vary strongly over short distances. However, it is not clear if there is a seasonal dependence in these variations and how they impact common snow climate indicators based on mean values, as well as estimated return levels of extreme events based on maximum values. To analyse the impacts of local-scale variations we compiled a unique set of parallel snow measurements from the Swiss Alps consisting of 30 station pairs with up to 77 years of parallel data. Station pairs are mostly located in the same villages (or within 3 km horizontal and 150 m vertical distances). Investigated snow climate indicators include average snow depth, maximum snow depth, sum of new snow, days with snow on the ground, days with snowfall as well as snow onset and disappearance dates, which are calculated for various seasons (December to February (DFJ), November to April (NDJFMA), and March to April (MA)). We computed relative and absolute error metrics for all these indicators at each station pair to demonstrate the potential uncertainty. We found the largest relative inter-pair differences for all indicators in spring (MA) and the smallest in DJF. Furthermore, there is hardly any difference between DJF and NDJFMA which show median uncertainties of less than 5 % for all indicators. Local-scale uncertainty ranges between less than 24 % (DJF) and less than 43 % (MA) for all indicators and 75 % of all station pairs. Highest (lowest) percentage of station pairs with uncertainty less than 15 % is observed for days with snow on the ground with 90 % (average snow depth, 30 %). Median differences of snow disappearance dates are rather small (three days) and similar to the ones found for snow onset dates (two days). An analysis of potential sunshine duration could not explain the higher uncertainties in spring. To analyse the impact of local-scale variations on the estimation of extreme events, 50-year return levels were quantified for maximum snow depth and maximum 3-day new snow sum, which are often used for prevention measures. The found return levels are within each other’s 95 % confidence intervals for all (but two) station pairs, revealing no striking differences. The findings serve as an important basis for our understanding of uncertainties of commonly used snow indicators and extremal indices. Knowledge about such uncertainties in combination with break-detection methods is the groundwork in view of any homogenization efforts regarding snow time series.


Sign in / Sign up

Export Citation Format

Share Document