scholarly journals A spurious jump in the satellite record: is Antarctic sea ice really expanding?

2014 ◽  
Vol 8 (1) ◽  
pp. 273-288 ◽  
Author(s):  
I. Eisenman ◽  
W. N. Meier ◽  
J. R. Norris

Abstract. Recent estimates indicate that the Antarctic sea ice cover is expanding at a statistically significant rate with a magnitude one third as large as the rapid rate of sea ice retreat in the Arctic. However, during the mid-2000s, with several fewer years in the observational record, the trend in Antarctic sea ice extent was reported to be considerably smaller and statistically indistinguishable from zero. Here, we show that the increase in the reported trend occurred primarily due to the effect of a previously undocumented change in the way the satellite sea ice observations are processed for the widely-used Bootstrap algorithm dataset, rather than a physical increase in the rate of ice advance. Although our analysis does not definitively identify whether this undocumented change introduced an error or removed one, the resulting difference in the trends suggests that a substantial error exists in either the current dataset or the version that was used prior to the mid-2000s, and numerous studies that have relied on these observations should be reexamined to determine the sensitivity of their results to this change in the dataset. Furthermore, a number of recent studies have investigated physical mechanisms for the observed expansion of the Antarctic sea ice cover. The results of this analysis raise the possibility that this expansion may be a spurious artifact of an error in the satellite observations, and that the actual Antarctic sea ice cover may not be expanding at all.

2014 ◽  
Vol 8 (4) ◽  
pp. 1289-1296 ◽  
Author(s):  
I. Eisenman ◽  
W. N. Meier ◽  
J. R. Norris

Abstract. Recent estimates indicate that the Antarctic sea ice cover is expanding at a statistically significant rate with a magnitude one-third as large as the rapid rate of sea ice retreat in the Arctic. However, during the mid-2000s, with several fewer years in the observational record, the trend in Antarctic sea ice extent was reported to be considerably smaller and statistically indistinguishable from zero. Here, we show that much of the increase in the reported trend occurred due to the previously undocumented effect of a change in the way the satellite sea ice observations are processed for the widely used Bootstrap algorithm data set, rather than a physical increase in the rate of ice advance. Specifically, we find that a change in the intercalibration across a 1991 sensor transition when the data set was reprocessed in 2007 caused a substantial change in the long-term trend. Although our analysis does not definitively identify whether this change introduced an error or removed one, the resulting difference in the trends suggests that a substantial error exists in either the current data set or the version that was used prior to the mid-2000s, and numerous studies that have relied on these observations should be reexamined to determine the sensitivity of their results to this change in the data set. Furthermore, a number of recent studies have investigated physical mechanisms for the observed expansion of the Antarctic sea ice cover. The results of this analysis raise the possibility that much of this expansion may be a spurious artifact of an error in the processing of the satellite observations.


MAUSAM ◽  
2021 ◽  
Vol 62 (4) ◽  
pp. 633-640
Author(s):  
SANDIP R.OZA ◽  
R.K.K. SINGH ◽  
ABHINAV SRIVASTAVA ◽  
MIHIR K.DASH ◽  
I.M.L. DAS ◽  
...  

The growth and decay of sea ice are complex processes and have important feedback onto the oceanic and atmospheric circulation. In the Antarctic, sea ice variability significantly affects the primary productivity in the Southern Ocean and thereby negatively influences the performance and survival of species in polar ecosystem. In present days, the awareness on the sea ice variability in the Antarctic is not as matured as it is for the Arctic region. The present paper focuses on the inter-annual trends (1999-2009) observed in the monthly fractional sea ice cover in the Antarctic at 1 × 1 degree level, for the November and February months, derived from QuikSCAT scatterometer data. OSCAT scatterometer data from India’s Oceansat-2 satellite were used to asses the sea ice extent (SIE) observed in the month of November 2009 and February 2010 and its deviation from climatic maximum (1979-2002) sea ice extent (CMSIE). Large differences were observed between SIE and CMSIE, however, trend results show that it is due to the high inter-annual variability in sea ice cover. Spatial distribution of trends show the existence of positive and negative trends in the parts of Western Pacific Ocean, Ross Sea, Amundsen and Bellingshausen Seas (ABS), Weddell Sea and Indian ocean sector of southern ocean. Sea ice trends are compared with long-term SST trends (1982-2009) observed in the austral summer month of February. Large-scale cooling trend observed around Ross Sea and warming trend in ABS sector are the distinct outcome of the study.


2017 ◽  
Vol 30 (16) ◽  
pp. 6265-6278 ◽  
Author(s):  
Erica Rosenblum ◽  
Ian Eisenman

Observations indicate that the Arctic sea ice cover is rapidly retreating while the Antarctic sea ice cover is steadily expanding. State-of-the-art climate models, by contrast, typically simulate a moderate decrease in both the Arctic and Antarctic sea ice covers. However, in each hemisphere there is a small subset of model simulations that have sea ice trends similar to the observations. Based on this, a number of recent studies have suggested that the models are consistent with the observations in each hemisphere when simulated internal climate variability is taken into account. Here sea ice changes during 1979–2013 are examined in simulations from the most recent Coupled Model Intercomparison Project (CMIP5) as well as the Community Earth System Model Large Ensemble (CESM-LE), drawing on previous work that found a close relationship in climate models between global-mean surface temperature and sea ice extent. All of the simulations with 1979–2013 Arctic sea ice retreat as fast as observations are found to have considerably more global warming than observations during this time period. Using two separate methods to estimate the sea ice retreat that would occur under the observed level of global warming in each simulation in both ensembles, it is found that simulated Arctic sea ice retreat as fast as observations would occur less than 1% of the time. This implies that the models are not consistent with the observations. In the Antarctic, simulated sea ice expansion as fast as observations is found to typically correspond with too little global warming, although these results are more equivocal. As a result, the simulations do not capture the observed asymmetry between Arctic and Antarctic sea ice trends. This suggests that the models may be getting the right sea ice trends for the wrong reasons in both polar regions.


2020 ◽  
Author(s):  
Junjie Wu ◽  
Ruediger Stein ◽  
Kirsten Fahl ◽  
Nicole Syring ◽  
Jens Hefter ◽  
...  

<p>The Arctic is changing rapidly, and one of the main and most obvious features is the drastic sea-ice retreat over the past few decades. Over such time scales, observations are deficient and not long enough for deciphering the processes controlling this accelerated sea-ice retreat. Thus, high-resolution, longer-term proxy records are needed for reconstruction of natural climate variability. In this context, we applied a biomarker approach on the well-dated sediment core ARA04C/37 recovered in the southern Beaufort Sea directly off the Mackenzie River, an area that is characterized by strong seasonal variability in sea-ice cover, primary productivity and terrigenous (riverine) input. Based on our biomarker records, the Beaufort Sea region was nearly ice-free in summer during the late Deglacial to early Holocene (14 to 8 ka). During the mid-late Holocene (8 to 0 ka), a seasonal sea-ice cover developed, coinciding with a drop in both terrigenous sediment flux and primary production. Supported by multiple proxy records, two major flood events characterized by prominent maxima in sediment flux occurred near 13 and 11 ka. The former is coincident with the Younger Dryas Cooling Event probably triggered by a  freshwater outburst from the Lake Agassiz. The origin of the second (younger) one might represent a second Mackenzie flood event, coinciding with meltwater pulse IB/post-glacial flooding of the shelf and related increased coastal erosion. Here, our interpretation remains a little bit speculative, and further research is needed and also in progress.</p>


2017 ◽  
Vol 30 (6) ◽  
pp. 2251-2267 ◽  
Author(s):  
Josefino C. Comiso ◽  
Robert A. Gersten ◽  
Larry V. Stock ◽  
John Turner ◽  
Gay J. Perez ◽  
...  

Abstract The Antarctic sea ice extent has been slowly increasing contrary to expected trends due to global warming and results from coupled climate models. After a record high extent in 2012 the extent was even higher in 2014 when the magnitude exceeded 20 × 106 km2 for the first time during the satellite era. The positive trend is confirmed with newly reprocessed sea ice data that addressed inconsistency issues in the time series. The variability in sea ice extent and ice area was studied alongside surface ice temperature for the 34-yr period starting in 1981, and the results of the analysis show a strong correlation of −0.94 during the growth season and −0.86 during the melt season. The correlation coefficients are even stronger with a one-month lag in surface temperature at −0.96 during the growth season and −0.98 during the melt season, suggesting that the trend in sea ice cover is strongly influenced by the trend in surface temperature. The correlation with atmospheric circulation as represented by the southern annular mode (SAM) index appears to be relatively weak. A case study comparing the record high in 2014 with a relatively low ice extent in 2015 also shows strong sensitivity to changes in surface temperature. The results suggest that the positive trend is a consequence of the spatial variability of global trends in surface temperature and that the ability of current climate models to forecast sea ice trend can be improved through better performance in reproducing observed surface temperatures in the Antarctic region.


2021 ◽  
Author(s):  
Ryan Fogt ◽  
Amanda Sleinkofer ◽  
Marilyn Raphael ◽  
Mark Handcock

Abstract In stark contrast to the Arctic, there have been statistically significant positive trends in total Antarctic sea ice extent since 1979, despite a sudden decline in sea ice in 2016(1–5) and increasing greenhouse gas concentrations. Attributing Antarctic sea ice trends is complicated by the fact that most coupled climate models show negative trends in sea ice extent since 1979, opposite of that observed(6–8). Additionally, the short record of sea ice extent (beginning in 1979), coupled with the high degree of interannual variability, make the record too short to fully understand the historical context of these recent changes(9). Here we show, using new robust observation-based reconstructions, that 1) these observed recent increases in Antarctic sea ice extent are unique in the context of the 20th century and 2) the observed trends are juxtaposed against statistically significant decreases in sea ice extent throughout much of the early and middle 20th century. These reconstructions are the first to provide reliable estimates of total sea ice extent surrounding the continent; previous proxy-based reconstructions are limited(10). Importantly, the reconstructions continue to show the high degree of interannual Antarctic sea ice extent variability that is marked with frequent sudden changes, such as observed in 2016, which stress the importance of a longer historical context when assessing and attributing observed trends in Antarctic climate(9). Our reconstructions are skillful enough to be used in climate models to allow better understanding of the interconnected nature of the Antarctic climate system and to improve predictions of the future state of Antarctic climate.


2019 ◽  
Vol 116 (29) ◽  
pp. 14414-14423 ◽  
Author(s):  
Claire L. Parkinson

Following over 3 decades of gradual but uneven increases in sea ice coverage, the yearly average Antarctic sea ice extents reached a record high of 12.8 × 106 km2 in 2014, followed by a decline so precipitous that they reached their lowest value in the 40-y 1979–2018 satellite multichannel passive-microwave record, 10.7 × 106 km2, in 2017. In contrast, it took the Arctic sea ice cover a full 3 decades to register a loss that great in yearly average ice extents. Still, when considering the 40-y record as a whole, the Antarctic sea ice continues to have a positive overall trend in yearly average ice extents, although at 11,300 ± 5,300 km2⋅y−1, this trend is only 50% of the trend for 1979–2014, before the precipitous decline. Four of the 5 sectors into which the Antarctic sea ice cover is divided all also have 40-y positive trends that are well reduced from their 2014–2017 values. The one anomalous sector in this regard, the Bellingshausen/Amundsen Seas, has a 40-y negative trend, with the yearly average ice extents decreasing overall in the first 3 decades, reaching a minimum in 2007, and exhibiting an overall upward trend since 2007 (i.e., reflecting a reversal in the opposite direction from the other 4 sectors and the Antarctic sea ice cover as a whole).


2013 ◽  
Vol 7 (2) ◽  
pp. 699-705 ◽  
Author(s):  
W. N. Meier ◽  
D. Gallaher ◽  
G. G. Campbell

Abstract. Visible satellite imagery from the 1964 Nimbus I satellite has been recovered, digitized, and processed to estimate Arctic and Antarctic sea ice extent for September 1964. September is the month when the Arctic sea ice reaches its minimum annual extent and the Antarctic sea ice reaches its maximum. Images from a three-week period were manually analyzed to estimate the location of the ice edge and then composited to obtain a hemispheric estimate. Uncertainties were based on limitations in the image analysis and the variation of the ice cover over the three-week period. The 1964 Antarctic extent is higher than estimates from the 1979–present passive microwave record, but is in accord with previous indications of higher extents during the 1960s. The Arctic 1964 extent is near the 1979–2000 average from the passive microwave record, suggesting relatively stable summer extents during the 1960s and 1970s preceding the downward trend since 1979 and particularly the large decrease in the last decade. These early satellite data put the recently observed record into a longer-term context.


2017 ◽  
Vol 11 (5) ◽  
pp. 2111-2116 ◽  
Author(s):  
Christian Katlein ◽  
Stefan Hendricks ◽  
Jeffrey Key

Abstract. On the basis of a new, consistent, long-term observational satellite dataset we show that, despite the observed increase of sea ice extent in the Antarctic, absorption of solar shortwave radiation in the Southern Ocean poleward of 60° latitude is not decreasing. The observations hence show that the small increase in Antarctic sea ice extent does not compensate for the combined effect of retreating Arctic sea ice and changes in cloud cover, which both result in a total increase in solar shortwave energy deposited into the polar oceans.


2013 ◽  
Vol 7 (1) ◽  
pp. 35-53 ◽  
Author(s):  
W. N. Meier ◽  
D. Gallaher ◽  
G. G. Campbell

Abstract. Satellite imagery from the 1964 Nimbus I satellite has been recovered, digitized, and processed to estimate Arctic and Antarctic sea ice extent for September 1964. September is the month when the Arctic reaches its minimum annual extent and the Antarctic reaches its maximum. Images were manually analyzed over a three-week period to estimate the location of the ice edge and then composited to obtain a hemispheric average. Uncertainties were based on limitations in the image analysis and the variation of the ice cover over the three week period. The 1964 Antarctic extent is higher than estimates from the 1979–present passive microwave record, but is in accord with previous indications of higher extents during the 1960s. The Arctic 1964 extent was near the 1979–2000 average from the passive microwave record, suggesting relatively stable summer extents until the recent large decrease. This early satellite record puts the recently observed into a longer-term context.


Sign in / Sign up

Export Citation Format

Share Document