scholarly journals Positive Trend in the Antarctic Sea Ice Cover and Associated Changes in Surface Temperature

2017 ◽  
Vol 30 (6) ◽  
pp. 2251-2267 ◽  
Author(s):  
Josefino C. Comiso ◽  
Robert A. Gersten ◽  
Larry V. Stock ◽  
John Turner ◽  
Gay J. Perez ◽  
...  

Abstract The Antarctic sea ice extent has been slowly increasing contrary to expected trends due to global warming and results from coupled climate models. After a record high extent in 2012 the extent was even higher in 2014 when the magnitude exceeded 20 × 106 km2 for the first time during the satellite era. The positive trend is confirmed with newly reprocessed sea ice data that addressed inconsistency issues in the time series. The variability in sea ice extent and ice area was studied alongside surface ice temperature for the 34-yr period starting in 1981, and the results of the analysis show a strong correlation of −0.94 during the growth season and −0.86 during the melt season. The correlation coefficients are even stronger with a one-month lag in surface temperature at −0.96 during the growth season and −0.98 during the melt season, suggesting that the trend in sea ice cover is strongly influenced by the trend in surface temperature. The correlation with atmospheric circulation as represented by the southern annular mode (SAM) index appears to be relatively weak. A case study comparing the record high in 2014 with a relatively low ice extent in 2015 also shows strong sensitivity to changes in surface temperature. The results suggest that the positive trend is a consequence of the spatial variability of global trends in surface temperature and that the ability of current climate models to forecast sea ice trend can be improved through better performance in reproducing observed surface temperatures in the Antarctic region.

2014 ◽  
Vol 8 (2) ◽  
pp. 453-470 ◽  
Author(s):  
H. Goosse ◽  
V. Zunz

Abstract. The large natural variability of the Antarctic sea ice is a key characteristic of the system that might be responsible for the small positive trend in sea ice extent observed since 1979. In order to gain insight of the processes responsible for this variability, we have analysed in a control simulation performed with a coupled climate model a positive ice–ocean feedback that amplifies sea ice variations. When sea ice concentration increases in a region, in particular close to the ice edge, the mixed layer depth tends to decrease. This can be caused by a net inflow of ice, and thus of freshwater, that stabilizes the water column. A second stabilizing mechanism at interannual timescales is associated with the downward salt transport due to the seasonal cycle of ice formation: brine is released in winter and mixed over a deep layer while the freshwater flux caused by ice melting is included in a shallow layer, resulting in a net vertical transport of salt. Because of this stronger stratification due to the presence of sea ice, more heat is stored at depth in the ocean and the vertical oceanic heat flux is reduced, which contributes to maintaining a higher ice extent. This positive feedback is not associated with a particular spatial pattern. Consequently, the spatial distribution of the trend in ice concentration is largely imposed by the wind changes that can provide the initial perturbation. A positive freshwater flux could alternatively be the initial trigger but the amplitude of the final response of the sea ice extent is finally set up by the amplification related to the ice–ocean feedback. Initial conditions also have an influence as the chance to have a large increase in ice extent is higher if starting from a state characterized by a low value.


2013 ◽  
Vol 7 (5) ◽  
pp. 4585-4632 ◽  
Author(s):  
H. Goosse ◽  
V. Zunz

Abstract. The large natural variability of the Antarctic sea ice is a key characteristic of the system that might be responsible for the small positive trend in sea ice extent observed since 1979. In order to gain insight in the processes responsible for this variability, we have analysed in a control simulation performed with a coupled climate model a strong positive ice-ocean feedback that amplifies sea ice variations. When sea ice concentration increases in a region, in particular close to the ice edge, the mixed layer depth tends to decrease. This can be caused by a net inflow of ice and thus of freshwater that stabilizes the water column. Another stabilizing mechanism at interannual time scales that appears more widespread in our simulation is associated with the downward salt transport due to the seasonal cycle of ice formation: brine is released in winter when ice is formed and mixed over a deep layer while the freshwater flux caused by ice melting is included in a shallow layer, resulting in a net vertical transport of salt. Because of this stronger stratification due to the presence of sea ice, more heat is stored at depth in the ocean and the vertical oceanic heat flux is reduced, which contributes to maintain a higher ice extent. This positive feedback is not associated with a particular spatial pattern. Consequently, the spatial distribution of the trend in ice concentration is largely imposed by the wind changes that can provide the initial perturbation. A positive freshwater flux could alternatively be the initial trigger but the amplitude of the final response of the sea ice extent is finally set up by the amplification related to ice-ocean feedback. Initial conditions have also an influence as the chance to have a large increase in ice extent is higher if starting from a state characterized by a low value.


2021 ◽  
Author(s):  
Ryan Fogt ◽  
Amanda Sleinkofer ◽  
Marilyn Raphael ◽  
Mark Handcock

Abstract In stark contrast to the Arctic, there have been statistically significant positive trends in total Antarctic sea ice extent since 1979, despite a sudden decline in sea ice in 2016(1–5) and increasing greenhouse gas concentrations. Attributing Antarctic sea ice trends is complicated by the fact that most coupled climate models show negative trends in sea ice extent since 1979, opposite of that observed(6–8). Additionally, the short record of sea ice extent (beginning in 1979), coupled with the high degree of interannual variability, make the record too short to fully understand the historical context of these recent changes(9). Here we show, using new robust observation-based reconstructions, that 1) these observed recent increases in Antarctic sea ice extent are unique in the context of the 20th century and 2) the observed trends are juxtaposed against statistically significant decreases in sea ice extent throughout much of the early and middle 20th century. These reconstructions are the first to provide reliable estimates of total sea ice extent surrounding the continent; previous proxy-based reconstructions are limited(10). Importantly, the reconstructions continue to show the high degree of interannual Antarctic sea ice extent variability that is marked with frequent sudden changes, such as observed in 2016, which stress the importance of a longer historical context when assessing and attributing observed trends in Antarctic climate(9). Our reconstructions are skillful enough to be used in climate models to allow better understanding of the interconnected nature of the Antarctic climate system and to improve predictions of the future state of Antarctic climate.


2014 ◽  
Vol 8 (4) ◽  
pp. 1289-1296 ◽  
Author(s):  
I. Eisenman ◽  
W. N. Meier ◽  
J. R. Norris

Abstract. Recent estimates indicate that the Antarctic sea ice cover is expanding at a statistically significant rate with a magnitude one-third as large as the rapid rate of sea ice retreat in the Arctic. However, during the mid-2000s, with several fewer years in the observational record, the trend in Antarctic sea ice extent was reported to be considerably smaller and statistically indistinguishable from zero. Here, we show that much of the increase in the reported trend occurred due to the previously undocumented effect of a change in the way the satellite sea ice observations are processed for the widely used Bootstrap algorithm data set, rather than a physical increase in the rate of ice advance. Specifically, we find that a change in the intercalibration across a 1991 sensor transition when the data set was reprocessed in 2007 caused a substantial change in the long-term trend. Although our analysis does not definitively identify whether this change introduced an error or removed one, the resulting difference in the trends suggests that a substantial error exists in either the current data set or the version that was used prior to the mid-2000s, and numerous studies that have relied on these observations should be reexamined to determine the sensitivity of their results to this change in the data set. Furthermore, a number of recent studies have investigated physical mechanisms for the observed expansion of the Antarctic sea ice cover. The results of this analysis raise the possibility that much of this expansion may be a spurious artifact of an error in the processing of the satellite observations.


1999 ◽  
Vol 29 ◽  
pp. 61-65 ◽  
Author(s):  
Xingren Wu ◽  
W. F. Budd ◽  
T. H. Jacka

AbstractA combination of modelling techniques is used in conjunction with the limited available observational data to examine Antarctic sea-ice changes with global warming over the past century. Firstly a coupled global climate model is forced by prescribing the effect of increasing greenhouse gases from last century to the present. Secondly the GISST (U.K. Meteorological Office global sea-ice and sea surface temperature) observational dataset is used to force an atmosphere-sea-ice model to compute changes in the Antarctic sea ice from last century to the present. Thirdly the global sea-surface-temperature (SST) anomalies derived from the coupled model are used to force the atmosphere-sea-ice model over the same period. The change in the Southern Hemisphere annual mean surface temperature simulated by the coupled model with greenhouse-gas forcing is about 0.6°C, which is similar to the observed change. Over the Antarctic (poleward of 60° S) the corresponding simulated change is about 0.7°C, which also appears compatible with observations. The reduction in summer sea-ice extent simulated by the CSIRO (Commonwealth Scientific and Industrial Research Organisation) coupled model is 0.44° lat. which is, in general, less than the observed change. For the two SST forcing cases the changes are, in general, larger than indicated by the observations. It is concluded that future changes of reduced sea-ice extent from increasing greenhouse gases as simulated by the CSIRO coupled model are not expected to be overestimates.


1998 ◽  
Vol 27 ◽  
pp. 413-419 ◽  
Author(s):  
Xingren Wu ◽  
W.F. Budd

An atmosphere–sea-ice model is used in combination with results from a coupled atmosphere–ocean–sea-ice model to examine the changes of the Antarctic sea-ice cover influenced by atmospheric circulation associated with the global sea-surface temperature (SST) changes alone over the past century. Using the current climatological SST of Reynolds for forcing, a reasonable seasonal simulation of the Antarctic sea-ice cover for the present climate (including ice concentration, thickness and coverage) is obtained. When global SST anomalies for the past century (derived from the coupled atmosphere–ocean–sea-ice model) are imposed, sea ice becomes more extensive, on the annual average, by 0.7-1.2° of latitude, more compact by about 5-7%, and thicker by 7-13 cm, than at present. These changes are similar to those simulated from changes in greenhouse gases using the coupled atmosphere–ocean–sea-ice model which gave corresponding changes of about 0.8° of latitude in extent, 6% in ice concentration and 12 cm in ice thickness. The simulated change in annual mean global surface temperature by the coupled atmosphere–ocean–sea-ice model was 0.7 Κ (0.6 Κ over the ocean including sea ice) which is similar to the observed change. Over the Antarctic the corresponding simulated change is 1.2 Κ which also appears compatible with observations.


2014 ◽  
Vol 8 (1) ◽  
pp. 273-288 ◽  
Author(s):  
I. Eisenman ◽  
W. N. Meier ◽  
J. R. Norris

Abstract. Recent estimates indicate that the Antarctic sea ice cover is expanding at a statistically significant rate with a magnitude one third as large as the rapid rate of sea ice retreat in the Arctic. However, during the mid-2000s, with several fewer years in the observational record, the trend in Antarctic sea ice extent was reported to be considerably smaller and statistically indistinguishable from zero. Here, we show that the increase in the reported trend occurred primarily due to the effect of a previously undocumented change in the way the satellite sea ice observations are processed for the widely-used Bootstrap algorithm dataset, rather than a physical increase in the rate of ice advance. Although our analysis does not definitively identify whether this undocumented change introduced an error or removed one, the resulting difference in the trends suggests that a substantial error exists in either the current dataset or the version that was used prior to the mid-2000s, and numerous studies that have relied on these observations should be reexamined to determine the sensitivity of their results to this change in the dataset. Furthermore, a number of recent studies have investigated physical mechanisms for the observed expansion of the Antarctic sea ice cover. The results of this analysis raise the possibility that this expansion may be a spurious artifact of an error in the satellite observations, and that the actual Antarctic sea ice cover may not be expanding at all.


MAUSAM ◽  
2021 ◽  
Vol 62 (4) ◽  
pp. 633-640
Author(s):  
SANDIP R.OZA ◽  
R.K.K. SINGH ◽  
ABHINAV SRIVASTAVA ◽  
MIHIR K.DASH ◽  
I.M.L. DAS ◽  
...  

The growth and decay of sea ice are complex processes and have important feedback onto the oceanic and atmospheric circulation. In the Antarctic, sea ice variability significantly affects the primary productivity in the Southern Ocean and thereby negatively influences the performance and survival of species in polar ecosystem. In present days, the awareness on the sea ice variability in the Antarctic is not as matured as it is for the Arctic region. The present paper focuses on the inter-annual trends (1999-2009) observed in the monthly fractional sea ice cover in the Antarctic at 1 × 1 degree level, for the November and February months, derived from QuikSCAT scatterometer data. OSCAT scatterometer data from India’s Oceansat-2 satellite were used to asses the sea ice extent (SIE) observed in the month of November 2009 and February 2010 and its deviation from climatic maximum (1979-2002) sea ice extent (CMSIE). Large differences were observed between SIE and CMSIE, however, trend results show that it is due to the high inter-annual variability in sea ice cover. Spatial distribution of trends show the existence of positive and negative trends in the parts of Western Pacific Ocean, Ross Sea, Amundsen and Bellingshausen Seas (ABS), Weddell Sea and Indian ocean sector of southern ocean. Sea ice trends are compared with long-term SST trends (1982-2009) observed in the austral summer month of February. Large-scale cooling trend observed around Ross Sea and warming trend in ABS sector are the distinct outcome of the study.


2015 ◽  
Vol 56 (69) ◽  
pp. 18-28 ◽  
Author(s):  
Ian Simmonds

AbstractWe examine the evolution of sea-ice extent (SIE) over both polar regions for 35 years from November 1978 to December 2013, as well as for the global total ice (Arctic plus Antarctic). Our examination confirms the ongoing loss of Arctic sea ice, and we find significant (p˂ 0.001) negative trends in all months, seasons and in the annual mean. The greatest rate of decrease occurs in September, and corresponds to a loss of 3 x 106 km2 over 35 years. The Antarctic shows positive trends in all seasons and for the annual mean (p˂0.01), with summer attaining a reduced significance (p˂0.10). Based on our longer record (which includes the remarkable year 2013) the positive Antarctic ice trends can no longer be considered ‘small’, and the positive trend in the annual mean of (15.29 ± 3.85) x 103 km2 a–1 is almost one-third of the magnitude of the Arctic annual mean decrease. The global annual mean SIE series exhibits a trend of (–35.29 ± 5.75) x 103 km2 a-1 (p<0.01). Finally we offer some thoughts as to why the SIE trends in the Coupled Model Intercomparison Phase 5 (CMIP5) simulations differ from the observed Antarctic increases.


2012 ◽  
Vol 6 (2) ◽  
pp. 931-956 ◽  
Author(s):  
C. L. Parkinson ◽  
D. J. Cavalieri

Abstract. In sharp contrast to the decreasing sea ice coverage of the Arctic, in the Antarctic the sea ice cover has, on average, expanded since the late 1970s. More specifically, satellite passive-microwave data for the period November 1978–December 2010 reveal an overall positive trend in ice extents of 17 100 ± 2300 km2 yr−1. Much of the increase, at 13 700 ± 1500 km2 yr−1, has occurred in the region of the Ross Sea, with lesser contributions from the Weddell Sea and Indian Ocean. One region, that of the Bellingshausen/Amundsen Seas, has, like the Arctic, instead experienced significant sea ice decreases, with an overall ice extent trend of −8200 ± 1200 km2 yr−1. When examined through the annual cycle over the 32-yr period 1979–2010, the Southern Hemisphere sea ice cover as a whole experienced positive ice extent trends in every month, ranging in magnitude from a low of 9100 ± 6300 km2 yr−1 in February to a high of 24 700 ± 10 000 km2 yr−1 in May. The Ross Sea and Indian Ocean also had positive trends in each month, while the Bellingshausen/Amundsen Seas had negative trends in each month, and the Weddell Sea and Western Pacific Ocean had a mixture of positive and negative trends. Comparing ice-area results to ice-extent results, in each case the ice-area trend has the same sign as the ice-extent trend, but differences in the magnitudes of the two trends identify regions with overall increasing ice concentrations and others with overall decreasing ice concentrations. The strong pattern of decreasing ice coverage in the Bellingshausen/Amundsen Seas region and increasing ice coverage in the Ross Sea region is suggestive of changes in atmospheric circulation. This is a key topic for future research.


Sign in / Sign up

Export Citation Format

Share Document