wind statistics
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 10)

H-INDEX

14
(FIVE YEARS 2)

2022 ◽  
Vol 7 (1) ◽  
pp. 1-17
Author(s):  
Alessandro Croce ◽  
Stefano Cacciola ◽  
Luca Sartori

Abstract. Wind farm control is one of the solutions recently proposed to increase the overall energy production of a wind power plant. A generic wind farm control is typically synthesized so as to optimize the energy production of the entire wind farm by reducing the detrimental effects due to wake–turbine interactions. As a matter of fact, the performance of a farm control is typically measured by looking at the increase in the power production, properly weighted through the wind statistics. Sometimes, fatigue loads are also considered in the control optimization problem. However, an aspect which is rather overlooked in the literature on this subject is the evaluation of the impact that a farm control law has on the individual wind turbine in terms of maximum loads and dynamic response under extreme conditions. In this work, two promising wind farm controls, based on wake redirection (WR) and dynamic induction control (DIC) strategy, are evaluated at the level of a single front-row wind turbine. To do so, a two-pronged analysis is performed. Firstly, the control techniques are evaluated in terms of the related impact on some specific key performance indicators, with special emphasis on ultimate loads and maximum blade deflection. Secondarily, an optimal blade redesign process is performed with the goal of quantifying the modification in the structure of the blade entailed by a possible increase in ultimate values due to the presence of wind farm control. Such an analysis provides for an important piece of information for assessing the impact of the farm control on the cost-of-energy model.


2020 ◽  
Author(s):  
Stefano Letizia ◽  
Lu Zhan ◽  
Giacomo Valerio Iungo

Abstract. A LiDAR Statistical Barnes Objective Analysis (LiSBOA) for optimal design of LiDAR scans and retrieval of the velocity statistical moments is proposed. The LiSBOA represents an adaptation of the classical Barnes scheme for the statistical analysis of unstructured experimental data in N-dimensional spaces and it is a suitable technique for the evaluation over a structured Cartesian grid of the statistics of scalar fields sampled through scanning LiDARs. The LiSBOA is validated and characterized via a Monte Carlo approach applied to a synthetic velocity field. This revisited theoretical framework for the Barnes objective analysis enables the formulation of guidelines for optimal design of LiDAR experiments and efficient application of the LiSBOA for the post-processing of LiDAR measurements. The optimal design of LiDAR scans is formulated as a two cost-function optimization problem including the minimization of the percentage of the measurement volume not sampled with adequate spatial resolution and the minimization of the error on the mean of the velocity field. The optimal design of the LiDAR scans also guides the selection of the smoothing parameter and the total number of iterations to use for the Barnes scheme.


Author(s):  
Vinh Thanh Le

In order to develop a wind farm project, the wind potential assessment and siting wind turbine are very important. It directly impacts energy production – a huge influence on the economic efficiency of the wind farm project. So, this paper presents the method to assess wind potential and optimized turbine distribution in Vietnam's offshore wind farm site, based on data from the met mast of GIZ organization (2012 - 2017) at An Ninh Dong commune, Tuy An district, Phu Yen province. The paper presents wind statistics theory from measured data through Weibull function. Comparing the short-term and long-term wind data (from meso-scale data sources – NASA, Hydrometeorological Station ...) is done by module MCP (Measure-Correlate-Predict). Wind potential is assessed when considering the effects of elevation and terrain roughness from wind data that has been long-term adjusted through WAsP and WindPRO software. Jensen model assesses the effects of wake loss between the turbines. The method calculates the power output of the wind farm when considering the influence of turbines is presented, as well as the algorithm of optimized turbine distribution. The optimized turbine distribution is done through WindPRO software. Finally, the turbine distribution results are presented with wind potential has been assessed and the input constraints of optimization.


2019 ◽  
Author(s):  
Charlotte B. Hasager ◽  
Andrea N. Hahmann ◽  
Tobias Ahsbahs ◽  
Ioanna Karagali ◽  
Tija Sile ◽  
...  

Abstract. Europe’s offshore wind resource mapping is part of the New European Wind Atlas (NEWA) international consortium effort. This study presents the results of analysis of Synthetic Aperture Radar (SAR) ocean wind maps based on Envisat and Sentinel-1 with a brief description of the wind retrieval process and Advanced SCATterometer (ASCAT) ocean wind maps. The wind statistics at 10m and 100m height using an extrapolation procedure involving simulated long-term stability over oceans is presented for both SAR and ASCAT. Furthermore, the Weather Research and Forecasting (WRF) offshore wind atlas of NEWA is presented. This has 3 km grid resolution with data every 30 minutes during 30 years from 1989 to 2018, while ASCAT has 12.5 km and SAR has 2 km resolution. Offshore mean wind speed maps at 100 m height from ASCAT, SAR, WRF and ERA5 at a European scale are compared. A case study on offshore winds near Crete compares SAR and WRF for flow from north, west and all directions. The paper highlights the ability of the WRF model to simulate the overall European wind climatology and the near coastal winds constrained by the resolution of the coastal topography in the WRF model simulations.


2019 ◽  
Vol 136 ◽  
pp. 04097
Author(s):  
Taotao Shui ◽  
Jing Liu ◽  
Haitao Wang ◽  
Luxi Zhang

Pedestrian-level wind conditions in residential areas are closely related to the quality of urban residents' daily life. In this paper, seven representative building layouts of urban residential areas were summarized from actual residential areas of Harbin, and wind tunnel experiments were carried out to study the pedestrian-level wind comfort in these residential areas. The assessments of pedestrian wind comfort are performed by combining the wind tunnel results and long-term local wind statistics. The results show that the hybrid-type and the enclosed-type layouts can provide better pedestrian wind comfort than parallel-type layouts, and the building heights of residential areas need to be controlled in cities of severe cold regions.


Sign in / Sign up

Export Citation Format

Share Document