scholarly journals Pre-clinical Evaluation of an Adult Extracoproreal Carbon Dioxide Removal System for Pediatric Application

2014 ◽  
Vol 3 ◽  
Author(s):  
Yerbol Mussin ◽  
Richard Jeffries ◽  
Denis Bulanin ◽  
Zhaksybay Zhumadilov ◽  
Farkhad Olzhayev ◽  
...  

Introduction. Adult extracorporeal carbon dioxide removal (ECCO2R) systems and pediatric ECMO share the common objectives of having a low blood flow rate and low priming volume while safely maintaining sufficient respiratory support. The Hemolung is a highly simplified adult ECCO2R system intended for partial respiratory support in adult patients with acute hypercapnic respiratory failure. The objective of this work was to conduct pre-clinical feasibility studies to determine if a highly efficient, active-mixing, adult ECCO2R system can safely be translated to the pediatric population. Methods. 14 healthy nonsedated juvenile sheep were used for acute (2 animals) and 7-day chronic (12 animals) in-vivo studies to evaluate treatment safety independently of respiratory related injuries. In all evaluations, we hypothesized that gas exchange capabilities of the Hemolung RAS in this model would be equivalent to the adult configuration performance at similar blood flows - minimum CO2 removal of 50 mL/min at a venous partial pressure of CO2 equal to 45 mmHg. Target blood flow rates were set to a minimum of 280 mL/min. Swan Ganz catheters were used under general anesthesia in the two acute subjects to evaluate blood gas status in the pulmonary artery.Results. The Hemolung RAS was found to have adequate gas exchange and pumping capabilities for full respiratory support for subjects weighing 3 – 25 kg. The Hemolung device was estimated to provide a partial respiratory support for subjects weighing 27 – 34 kg. The seven-day studies in juvenile sheep demonstrated that veno-venous extracorporeal support could be provided safely at low flows with no significant adverse reactions related to device operation.Conclusion. The study outcomes suggest the potential use of the Hemolung RAS in a veno-venous pediatric configuration to safely provide respiratory support utilizing a significantly less complex system than traditional pediatric ECMO. 

2014 ◽  
Vol 120 (2) ◽  
pp. 416-424 ◽  
Author(s):  
Alberto Zanella ◽  
Paolo Mangili ◽  
Sara Redaelli ◽  
Vittorio Scaravilli ◽  
Marco Giani ◽  
...  

Abstract Background: Extracorporeal carbon dioxide removal has been proposed to achieve protective ventilation in patients at risk for ventilator-induced lung injury. In an acute study, the authors previously described an extracorporeal carbon dioxide removal technique enhanced by regional extracorporeal blood acidification. The current study evaluates efficacy and feasibility of such technology applied for 48 h. Methods: Ten pigs were connected to a low-flow veno-venous extracorporeal circuit (blood flow rate, 0.25 l/min) including a membrane lung. Blood acidification was achieved in eight pigs by continuous infusion of 2.5 mEq/min of lactic acid at the membrane lung inlet. The acid infusion was interrupted for 1 h at the 24 and 48 h. Two control pigs did not receive acidification. At baseline and every 8 h thereafter, the authors measured blood lactate, gases, chemistry, and the amount of carbon dioxide removed by the membrane lung (VCO2ML). The authors also measured erythrocyte metabolites and selected cytokines. Histological and metalloproteinases analyses were performed on selected organs. Results: Blood acidification consistently increased VCO2ML by 62 to 78%, from 79 ± 13 to 128 ± 22 ml/min at baseline, from 60 ± 8 to 101 ± 16 ml/min at 24 h, and from 54 ± 6 to 96 ± 16 ml/min at 48 h. During regional acidification, arterial pH decreased slightly (average reduction, 0.04), whereas arterial lactate remained lower than 4 mEq/l. No sign of organ and erythrocyte damage was recorded. Conclusion: Infusion of lactic acid at the membrane lung inlet consistently increased VCO2ML providing a safe removal of carbon dioxide from only 250 ml/min extracorporeal blood flow in amounts equivalent to 50% production of an adult man.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

1977 ◽  
Vol 38 (04) ◽  
pp. 0823-0830 ◽  
Author(s):  
Mayrovttz N. Harvey ◽  
Wiedeman P. Mary ◽  
Ronald F. Tuma

SummaryIn vivo studies of the microcirculation of an untraumatized and unanesthetized animal preparation has shown that leukocyte adherence to vascular endothelium is an extremely rare occurrence. Induction of leukocyte adherence can be produced in a variety of ways including direct trauma to the vessels, remote tissue injury via laser irradiation, and denuding the epithelium overlying the observed vessels. The role of blood flow and local hemodynamics on the leukocyte adherence process is quite complex and still not fully understood. From the results reported it may be concluded that blood flow stasis will not produce leukocyte adherence but will augment pre-existing adherence. Studies using 2 quantitative measures of adherence, leukocyte flux and leukocyte velocity have shown these parameters to be affected differently by local hemodynamics. Initial adherence appears to be critically dependent on the magnitude of the blood shear stress at the vessel wall as evidenced by the lack of observable leukocyte flux above some threshold value. Subsequent behavior of the leukocytes as characterized by their average rolling velocity shows no apparent relationship to shear stress but, for low velocities, may be related to the linear blood velocity.


ASAIO Journal ◽  
1996 ◽  
Vol 42 (5) ◽  
pp. M845-849 ◽  
Author(s):  
ROBERT L. BRUNSTON ◽  
WEIKE TAO ◽  
AKHIL BIDANI ◽  
VICTOR J. CARDENAS ◽  
DANIEL L. TRABER ◽  
...  

2001 ◽  
Vol 1 ◽  
pp. 168-180 ◽  
Author(s):  
Lars Edvinsson ◽  
Peter J. Goadsby ◽  
Rolf Uddman

Amylin and adrenomedullin are two peptides structurally related to calcitonin gene-related peptide (CGRP). We studied the occurrence of amylin in trigeminal ganglia and cerebral blood vessels of the cat with immunocytochemistry and evaluated the role of amylin and adrenomedullin in the cerebral circulation by in vitro and in vivo pharmacology. Immunocytochemistry revealed that numerous nerve cell bodies in the trigeminal ganglion contained CGRP immunoreactivity (-ir); some of these also expressed amylin-ir but none adrenomedullin-ir. There were numerous nerve fibres surrounding cerebral blood vessels that contained CGRP-ir. Occasional fibres contained amylin-ir while we observed no adrenomedullin-ir in the vessel walls. With RT-PCR and Real-Time�PCR we revealed the presence of mRNA for calcitonin receptor-like receptor (CLRL) and receptor-activity-modifying proteins (RAMPs) in cat cerebral arteries. In vitro studies revealed that amylin, adrenomedullin, and CGRP relaxed ring segments of the cat middle cerebral artery. CGRP and amylin caused concentration-dependent relaxations at low concentrations of PGF2a-precontracted segment (with or without endothelium) whereas only at high concentration did adrenomedullin cause relaxation. CGRP8-37 blocked the CGRP and amylin induced relaxations in a parallel fashion. In vivo studies of amylin, adrenomedullin, and CGRP showed a brisk reproducible increase in local cerebral blood flow as examined using laser Doppler flowmetry applied to the cerebral cortex of the a-chloralose�anesthetized cat. The responses to amylin and CGRP were blocked by CGRP8-37. The studies suggest that there is a functional sub-set of amylin-containing trigeminal neurons which probably act via CGRP receptors.


2021 ◽  
Author(s):  
George Hyde-Linaker ◽  
Pauline Hall Barrientos ◽  
Sokratis Stoumpos ◽  
Asimina Kazakidi

Abstract Despite arteriovenous fistulae (AVF) being the preferred vascular access for haemodialysis, high primary failure rates (30-70%) and low one-year patency rates (40-70%) hamper their use. The haemodynamics within the vessels of the fistula change significantly following surgical creation of the anastomosis and can be a surrogate of AVF success or failure. Computational fluid dynamics (CFD) can crucially predict AVF outcomes through robust analysis of a fistula’s haemodynamic patterns, which is impractical in-vivo. We present a proof-of-concept CFD framework for characterising the AVF blood flow prior and following surgical creation of a successful left radiocephalic AVF in a 20-year-old end-stage kidney disease patient. The reconstructed vasculature was generated utilising multiple contrast-enhanced magnetic resonance imaging (MRI) datasets. Large eddy simulations were conducted for establishing the extent of arterial and venous remodelling. Following anastomosis creation, a significant 2-3-fold increase in blood flow rate was induced downstream of the left subclavian artery. This was validated through comparison with post-AVF patient-specific phase-contrast data. The increased flow rate yielded an increase in time-averaged wall shear stress (TAWSS), a key marker of adaptive vascular remodelling. We have demonstrated TAWSS and oscillatory shear distributions of the transitional-flow in the venous anastomosis are predictive of AVF remodelling.


1982 ◽  
Vol 2 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Myron D. Ginsberg ◽  
Alan H. Lockwood ◽  
Raul Busto ◽  
Ronald D. Finn ◽  
Cathy M. Butler ◽  
...  

A simplified mathematical model is described for the measurement of regional cerebral blood flow by positron emission tomography in man, based on a modification of the autoradiographic strategy originally developed for experimental animal studies. A modified ramp intravenous infusion of radiolabeled tracer is used; this results in a monotonically increasing curvilinear arterial activity curve that may be accurately described by a polynomial of low degree (= z). Integrated cranial activity C̄ B is measured in regions of interest during the latter portion of the tracer infusion period (times T1 to T2). It is shown that [Formula: see text] where each of the terms A x is a readily evaluated function of the blood flow rate constant k, the brain:blood partition coefficient for the tracer, the cranial activity integration limits T1 and T2, the coefficients of the polynomial describing the arterial curve, and an iteration factor n that is chosen to yield the desired degree of precision. This relationship permits generation of a table of C̄ B vs. k, thus facilitating on-line computer solution for blood flow. This in vivo autoradiographic paradigm was validated in a series of rats by comparing it to the classical autoradiographic strategy developed by Kety and associates. Excellent agreement was demonstrated between blood flow values obtained by the two methods: CBF in vivo = CBFclassical X 0.99 − 0.02 (units in ml g−1 min−1; correlation coefficient r = 0.966).


1990 ◽  
Vol 259 (6) ◽  
pp. E851-E855
Author(s):  
B. A. Meyer ◽  
S. W. Walsh ◽  
V. M. Parisi

Leukotrienes are synthesized during pregnancy and produce cardiovascular effects in adults. We hypothesized that leukotriene C4 would cause vasoconstriction in the fetus and placenta. Eight near-term, unanesthetized ovine fetuses were studied before and after infusion of 10 micrograms leukotriene C4 (LTC4) into the fetal vena cava. Cardiovascular monitoring of maternal and fetal arterial pressures and heart rates was performed. Fetal blood flows were measured by the radioactive-microsphere technique. Sustained elevations in systolic and diastolic blood pressure and decreased fetal heart rate began by 1 min and returned to baseline by 30 min. Arterial pH fell from 7.33 +/- 0.01 to 7.29 +/- 0.01 at 15 min (P less than 0.05) and to 7.29 +/- 0.01 at 30 min (P less than 0.05), with a significant increase in base deficit from 0.7 +/- 0.7 to 3.5 +/- 0.7 at 15 min (P less than 0.05) and to 2.9 +/- 1.0 at 30 min (P less than 0.05). Fetal PO2 and PCO2 were unchanged. Significant decreases in blood flow and resistance were seen in the umbilical placental circulation as well as in fetal skeletal muscle and intestine. Blood flow and resistance were unchanged in the renal and adrenal vascular beds. Fetal administration of LTC4 caused no changes in maternal cardiovascular parameters. These findings represent the first in vivo studies of the effects of a lipoxygenase metabolite on fetal-placental blood flow.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1741
Author(s):  
Konstantin A. Kuznetsov ◽  
Ivan S. Murashov ◽  
Vera S. Chernonosova ◽  
Boris P. Chelobanov ◽  
Alena O. Stepanova ◽  
...  

A stenting procedure aimed at blood flow restoration in stenosed arteries significantly improves the efficiency of vascular surgery. However, the current challenge is to prevent neointimal growth, which reduces the vessel lumen, in the stented segments in the long run. We tested in vivo drug-eluting coating applied by electrospinning to metal vascular stents to inhibit the overgrowth of neointimal cells via both the drug release and mechanical support of the vascular wall. The blend of polycaprolactone with human serum albumin and paclitaxel was used for stent coating by electrospinning. The drug-eluting stents (DESs) were placed using a balloon catheter to the rabbit common iliac artery for 1, 3, and 6 months. The blood flow rate was ultrasonically determined in vivo. After explantation, the stented arterial segment was visually and histologically examined. Any undesirable biological responses (rejection or hemodynamically significant stenosis) were unobservable in the experimental groups. DESs were less traumatic and induced weaker neointimal growth; over six months, the blood flow increased by 37% versus bare-metal stents, where it increased by at least double the rate. Thus, electrospun-coated DESs demonstrate considerable advantages over the bare-metal variants.


Sign in / Sign up

Export Citation Format

Share Document