scholarly journals A Study on a Multiplicity of Load Balancing Algorithms

2019 ◽  
Vol 8 (2) ◽  
pp. 64-69
Author(s):  
Vidyaathulasiraman . ◽  
G. Manikandan

Past days rulers and publics need to convey message their relatives or one place to somewhere else with the assistance of some correspondence channels like birds or individuals like present mailmen or post ladies and days are passing and development of data and innovation the communication quick and less expansive and present day interchanges totally through on the web. Day by day populaces development and innovation utilizing people groups heterogeneously expanding. So present days network is a critical part and significant assuming jobs in day by day life its outcomes more system issues like less throughput, insufficient network resources, less flags, resource not similarly shared for a given time frame, time complicity because of this troubles the communication mostly or here and there totally interfered with now daily’s a fundamental piece of information is an expected portion to social and economic related change and it is logically expanding worldwide condition. In this exploration essentially an undertaking has been made to classify secured sharing models, architecture, sharing arrangements and load adjusting algorithms in w3. At present need to configure modern load adjusting algorithms on account of our central and state Government focusing propelled correspondences and modernized classrooms through distributed computing.

Author(s):  
Tariq Emad Ali ◽  
Ameer Hussein Morad ◽  
Mohammed A. Abdala

<span>In the last two decades, networks had been changed according to the rapid changing in its requirements.  The current Data Center Networks have large number of hosts (tens or thousands) with special needs of bandwidth as the cloud network and the multimedia content computing is increased. The conventional Data Center Networks (DCNs) are highlighted by the increased number of users and bandwidth requirements which in turn have many implementation limitations.  The current networking devices with its control and forwarding planes coupling result in network architectures are not suitable for dynamic computing and storage needs.  Software Defined networking (SDN) is introduced to change this notion of traditional networks by decoupling control and forwarding planes. So, due to the rapid increase in the number of applications, websites, storage space, and some of the network resources are being underutilized due to static routing mechanisms. To overcome these limitations, a Software Defined Network based Openflow Data Center network architecture is used to obtain better performance parameters and implementing traffic load balancing function. The load balancing distributes the traffic requests over the connected servers, to diminish network congestions, and reduce underutilization problem of servers. As a result, SDN is developed to afford more effective configuration, enhanced performance, and more flexibility to deal with huge network designs</span>


Author(s):  
Ibrahim Mahmood Ibrahim ◽  
Siddeeq Y. Ameen ◽  
Hajar Maseeh Yasin ◽  
Naaman Omar ◽  
Shakir Fattah Kak ◽  
...  

Today, web services rapidly increased and are accessed by many users, leading to massive traffic on the Internet. Hence, the web server suffers from this problem, and it becomes challenging to manage the total traffic with growing users. It will be overloaded and show response time and bottleneck, so this massive traffic must be shared among several servers. Therefore, the load balancing technologies and server clusters are potent methods for dealing with server bottlenecks. Load balancing techniques distribute the load among servers in the cluster so that it balances all web servers. The motivation of this paper is to give an overview of the several load balancing techniques used to enhance the efficiency of web servers in terms of response time, throughput, and resource utilization. Different algorithms are addressed by researchers and get good results like the pending job, and IP hash algorithms achieve better performance.


2014 ◽  
Vol 7 (1) ◽  
pp. 267-281 ◽  
Author(s):  
B. van Werkhoven ◽  
J. Maassen ◽  
M. Kliphuis ◽  
H. A. Dijkstra ◽  
S. E. Brunnabend ◽  
...  

Abstract. The Parallel Ocean Program (POP) is used in many strongly eddying ocean circulation simulations. Ideally it would be desirable to be able to do thousand-year-long simulations, but the current performance of POP prohibits these types of simulations. In this work, using a new distributed computing approach, two methods to improve the performance of POP are presented. The first is a block-partitioning scheme for the optimization of the load balancing of POP such that it can be run efficiently in a multi-platform setting. The second is the implementation of part of the POP model code on graphics processing units (GPUs). We show that the combination of both innovations also leads to a substantial performance increase when running POP simultaneously over multiple computational platforms.


Author(s):  
Matthew K. Luka ◽  
Aderemi A. Atayero

Modelling of ill-defined or unpredictable systems can be very challenging. Most models have relied on conventional mathematical models which does not adequately track some of the multifaceted challenges of such a system. Load balancing, which is a self-optimization operation of Self-Organizing Networks (SON), aims at ensuring an equitable distribution of users in the network. This translates into better user satisfaction and a more efficient use of network resources. Several methods for load balancing have been proposed. While some of them have a very buoyant theoretical basis, they are not practical. Furthermore, most of the techniques proposed the use of an iterative algorithm, which in itself is not computationally efficient as it does not take the unpredictable fluctuation of network load into consideration. This chapter proposes the use of soft computing, precisely Adaptive Neuro-Fuzzy Inference System (ANFIS) model, for dynamic QoS aware load balancing in 3GPP LTE. The use of ANFIS offers learning capability of neural network and knowledge representation of fuzzy logic for a load balancing solution that is cost effective and closer to human intuition. Three key load parameters (number of satisfied user in the network, virtual load of the serving eNodeB, and the overall state of the target eNodeB) are used to adjust the hysteresis value for load balancing.


Sign in / Sign up

Export Citation Format

Share Document