An electricity market model with generation capacity expansion under uncertainty

Author(s):  
Andreas Schroeder

This article presents an electricity dispatch model with endogenous electricity generation capacity expansion for Germany over the horizon 2035. The target is to quantify how fuel and carbon price risk impacts investment incentives of thermal power plants. Results point to findings which are in line with general theory: Accounting for stochasticity increases investment levels overall and the investment portfolio tends to be more diverse.

Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3098
Author(s):  
Ritter ◽  
Meyer ◽  
Koch ◽  
Haller ◽  
Bauknecht ◽  
...  

In order to achieve a high renewable share in the electricity system, a significant expansion of cross-border exchange capacities is planned. Historically, the actual expansion of interconnector capacities has significantly lagged behind the planned expansion. This study examines the impact that such continued delays would have when compared to a strong interconnector expansion in an ambitious energy transition scenario. For this purpose, scenarios for the years 2030, 2040, and 2050 are examined using the electricity market model PowerFlex EU. The analysis reveals that both CO2 emissions and variable costs of electricity generation increase if interconnector expansion is delayed. This effect is most significant in the scenario year 2050, where lower connectivity leads roughly to a doubling of both CO2 emissions and variable costs of electricity generation. This increase results from a lower level of European electricity trading, a curtailment of electricity from a renewable energy source (RES-E), and a corresponding higher level of conventional electricity generation. Most notably, in Southern and Central Europe, less interconnection leads to higher use of natural gas power plants since less renewable electricity from Northern Europe can be integrated into the European grid.


The paper is devoted to analysis of functional peculiarities of thermal power plants in Ukraine. In the course of the study, key determinants of the sustainable development of domestic electricity generation were identified in the context of transition to a new market model. The preconditions of activation and support of the sustainable development concept implementation process in the modern business practice of the energy sector enterprises within the Ukrainian economy are outlined. The theoretical and practical bases for ensuring the sustainable development of energy in relation to other United Nations Declarations of Sustainable Development are indicated. The comparative estimation of the efficiency level of state policy in scope of energy independence and resource conservation with the use of a complex indicator of GDP energy intensity is given. On the basis of international and domestic statistical data the dynamics of volumes of electricity production in Ukraine for the period of 1990-2017 as well as the structure of electricity generation by type of generation were analyzed. The dynamics of electric power generation in Ukraine by types of raw materials was presented in complex with the dynamics of coal consumption and production for the corresponding period. The peculiarities of thermal power plants functioning in comparison with other power generating enterprises in modern conditions are specified. The key element of Ukraine’s energy independence – the volume of proven coal reserves – is a prerequisite for the efficient functioning of domestic thermal power plants. The pricing features in the sphere of electricity production and sales are outlined, in particular, the structure of market rate and the price of electricity sales by producers to the Wholesale Market are presented. The significance of the innovation factor in the process of improving the efficiency of thermal power plants functioning has been substantiated, taking into account the economic, social and environmental aspects of their production and economic activity.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4176
Author(s):  
Dirk Hladik ◽  
Christoph Fraunholz ◽  
Matthias Kühnbach ◽  
Pia Manz ◽  
Robert Kunze

In Germany, the political decision to phase out nuclear and coal-fired power as well as delays in the planned grid extension are expected to intensify the current issue of high grid congestion volumes. In this article, we investigate two instruments which may help to cope with these challenges: market splitting and the introduction of a capacity mechanism. For this purpose, we carry out a comprehensive system analysis by jointly applying the demand side models FORECAST and eLOAD, the electricity market model PowerACE and the optimal power flow model ELMOD. While a German market splitting has a positive short-term impact on the congestion volumes, we find the optimal zonal delimination determined for 2020 to become outdated by 2035 resulting in new grid bottlenecks. Yet, readjusting the zonal configuration would lower the ability of the market split to provide regional investment incentives. Introducing a capacity mechanism with a congestion indicator allows allocating new power plants in regions with higher electricity demand. Consequently, we find the required congestion management to be substantially reduced in this setting. However, given the large amount of design parameters, any capacity mechanism needs to be carefully planned before its introduction to avoid new inefficiences on the market side.


Author(s):  
Harshkumar Patel ◽  
Yogesh Patel

Now-a-days energy planners are aiming to increase the use of renewable energy sources and nuclear to meet the electricity generation. But till now coal-based power plants are the major source of electricity generation. Disadvantages of coal-based thermal power plants is disposal problem of fly ash and pond ash. It was earlier considered as a total waste and environmental hazard thus its use was limited, but now its useful properties have been known as raw material for various application in construction field. Fly ash from the thermal plants is available in large quantities in fine and coarse form. Fine fly ash is used in construction industry in some amount and coarse fly ash is subsequently disposed over land in slurry forms. In India around 180 MT fly is produced and only around 45% of that is being utilized in different sectors. Balance fly ash is being disposed over land. It needs one acre of land for ash disposal to produce 1MW electricity from coal. Fly ash and pond ash utilization helps to reduce the consumption of natural resources. The fly ash became available in coal based thermal power station in the year 1930 in USA. For its gainful utilization, scientist started research activities and in the year 1937, R.E. Davis and his associates at university of California published research details on use of fly ash in cement concrete. This research had laid foundation for its specification, testing & usages. This study reports the potential use of pond-ash and fly-ash as cement in concrete mixes. In this present study of concrete produced using fly ash, pond ash and OPC 53 grade will be carried. An attempt will be made to investigate characteristics of OPC concrete with combined fly ash and pond ash mixed concrete for Compressive Strength test, Split Tensile Strength test, Flexural Strength test and Durability tests. This paper deals with the review of literature for fly-ash and pond-ash as partial replacement of cement in concrete.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3860
Author(s):  
Priyanka Shinde ◽  
Ioannis Boukas ◽  
David Radu ◽  
Miguel Manuel de Manuel de Villena ◽  
Mikael Amelin

In recent years, the vast penetration of renewable energy sources has introduced a large degree of uncertainty into the power system, thus leading to increased trading activity in the continuous intra-day electricity market. In this paper, we propose an agent-based modeling framework to analyze the behavior and the interactions between renewable energy sources, consumers and thermal power plants in the European Continuous Intra-day (CID) market. Additionally, we propose a novel adaptive trading strategy that can be used by the agents that participate in CID market. The agents learn how to adapt their behavior according to the arrival of new information and how to react to changing market conditions by updating their willingness to trade. A comparative analysis was performed to study the behavior of agents when they adopt the proposed strategy as opposed to other benchmark strategies. The effects of unexpected outages and information asymmetry on the market evolution and the market liquidity were also investigated.


Author(s):  
Farshid Zabihian ◽  
Alan S. Fung

Nowadays, the global climate change has been a worldwide concern and the greenhouse gases (GHG) emissions are considered as the primary cause of that. The United Nations Conference on Environment and Development (UNCED) divided countries into two groups: Annex I Parties and Non-Annex I Parties. Since Iran and all other countries in the Middle East are among Non-Annex I Parties, they are not required to submit annual GHG inventory report. However, the global climate change is a worldwide phenomenon so Middle Eastern countries should be involved and it is necessary to prepare such a report at least unofficially. In this paper the terminology and the methods to calculate GHG emissions will first be explained and then GHG emissions estimates for the Iranian power plants will be presented. Finally the results will be compared with GHG emissions from the Canadian electricity generation sector. The results for the Iranian power plants show that in 2005 greenhouse gas intensity for steam power plants, gas turbines and combined cycle power plants were 617, 773, and 462 g CO2eq/kWh, respectively with the overall intensity of 610 g CO2eq/kWh for all thermal power plants. This GHG intensity is directly depend on efficiency of power plants. Whereas, in 2004 GHG intensity for electricity generation sector in Canada for different fuels were as follows: Coal 1010, refined petroleum products 640, and natural gas 523 g CO2eq/kWh, which are comparable with same data for Iran. For average GHG intensity in the whole electricity generation sector the difference is much higher: Canada 222 vs. Iran 610g CO2eq/kWh. The reason is that in Canada a considerable portion of electricity is generated by hydro-electric and nuclear power plants in which they do not emit significant amount of GHG emissions. The average GHG intensity in electricity generation sector in Iran between 1995 and 2005 experienced 13% reduction. While in Canada at the same period of time there was 21% increase. However, the results demonstrate that still there are great potentials for GHG emissions reduction in Iran’s electricity generation sector.


2005 ◽  
Vol 9 (3) ◽  
pp. 15-23 ◽  
Author(s):  
Fajik Begic ◽  
Anes Kazagic

Along with the current processes of restructuring of Energy power system of Bosnia and Herzegovina, liberalization of the electricity market, and modernization of the existing power plants, Bosnia and Herzegovina must turn to the utilization of renewable resources in reason able dynamics as well. Respecting this policy, the initial Valuation of the potential of renewable erg resources in Bosnia and Herzegovina is per formed. The methodology of evaluation of wind energy utilization is presented in this paper, as well as some other aspects of utilization of the renewable energy resources in Bosnia and Herzegovina. Implementation of selected projects should improve sustainability of energy power production in Bosnia and Herzegovina, by reducing the total emission of carbon dioxide originated from energy power system of Bosnia and Herzegovina.


Sign in / Sign up

Export Citation Format

Share Document