Comparative Evaluation of Induction Heating Coil Arrangement and Arrangement to Optimize the Temperature Distribution of Concrete Curing Formwork

Author(s):  
Dong-Jin Kim ◽  
Hyun-Oh Shin ◽  
Chi-Hyung Ahn
Author(s):  
Huy-Tien Bui ◽  
Sheng-Jye Hwang

In an injection molding machine, the conventional barrel heating system which uses resistance heating method (RH) has some drawbacks such as low heating rate, long heating time, and energy loss. With induction heating (IH) technique, the barrel can better handle almost all of these disadvantages. However, non-uniform temperature distribution on inside surface of a barrel is the main drawback of induction heaters. A working coil coupled with magnetic flux concentrators via adjustment of magnetic flux concentrator spacing to achieve uniformity of magnetic flux and temperature distribution on the inside surface of a barrel was proposed and experimented. Results showed that, when barrel was heated by induction heating method with the proposed induction heating coil, heating time to reach a specific temperature could be reduced, and heating rate increased compared to resistance heating method. With 8 mm pitch of magnetic flux concentrators on a coil, the temperature distribution was the most uniform.


1981 ◽  
Vol 17 (1) ◽  
pp. 908-911 ◽  
Author(s):  
M. Walker ◽  
J. Declercq ◽  
B. Zeitlin ◽  
J. Scudiere ◽  
M. Ross ◽  
...  

Author(s):  
A.A. Shcherba ◽  
◽  
A.D. Podoltsev ◽  
I.M. Kucheriava ◽  
V.M. Zolotarev ◽  
...  

The model for the computation of thermal processes in induction heating installations with moving ingots is developed using equivalent thermal circuits. The controlled current sources as additional elements in the model are used to take into account the convective heat transfer along the moving ingot. The model is implemented in the program Matlab/Simulink and makes it possible to determine the temperature distribution along the ingot under steady-state heating conditions. The results are compared with data obtained by the alternative method which is based on the electromagnetic and thermal field theory and realized in the Comsol program. As shown the computational results by two methods concerning the temperature distribution along the ingot are in good agreement. The existing advantages and shortcomings of the used approaches are discussed. Ref. 8, fig. 3, table.


2021 ◽  
Vol 24 (10) ◽  
pp. 888-897
Author(s):  
Jaehong Lee ◽  
Junghyeon Roh ◽  
Hyung-Woo Lee ◽  
Hyeong-Seok Oh ◽  
Seung-Hwan Lee

2020 ◽  
Vol 12 (7) ◽  
pp. 168781402093848
Author(s):  
Kangjie Song ◽  
Jing Guan ◽  
Kunmao Li ◽  
Jing Liu

The axial and radial temperature distributions of an induction heating workpiece considerably impact the subsequent nitriding process. To obtain a satisfactory temperature distribution, an equal pitch coil, a variable pitch coil, and a variable radius coil were designed. Furthermore, an induction heating model that exhibits electromagnetic and temperature field coupling was established; thus, the effects of the current density and frequency on the heating efficiency and temperature distribution of the workpiece were analyzed and compared. In addition, an induction heating experiment was conducted to verify the model. According to the numerical results, the variable radius coil can reduce the axial temperature difference in comparison with equal pitch coil and variable pitch coil. Hence, the workpiece heated using the variable radius coil can achieve a better temperature distribution when compared with those heated by the equal pitch coil and variable pitch coil, with appropriate current density and current frequency values.


2020 ◽  
Vol 103 (4) ◽  
pp. 003685042096785
Author(s):  
Jianguo Duan ◽  
Qinglei Zhang ◽  
Xintao Long ◽  
Kebin Zhang

Semi-built-up crankshafts are universally manufactured by shrink-fitting process with induction heating device. The configurations of induction coil have a great impact on the distributions of eddy current and temperature of crankthrows. Most induction devices are apt to cause some undesirable phenomena such as uneven temperature distribution and irregular deformation after induction heating. This article proposes a modified configuration of induction heating coil according to the crankthrow geometry. By combining the heat conduction equation and the heat boundary conditions, a three-dimensional finite element model, which takes into account the nonlinearity of the material’s electromagnetic and thermal physical properties in the heating process, was developed. The influence of several parameters, such as position and curvature of the arc coil, the current frequency and density, coaxiality of crankweb hole and coil, influencing the temperature distribution inside the crankthrow was also analyzed. The comparison with the numerical simulation results of the original configuration indicates that the modified configuration has better adaptability to the crankthrow. Also, it can help to improve the temperature distribution, and reduce the deformation of the shrink-fitting hole. This exploration provide an effective way for the enterprise to further enhance the shrink-fitting quality of crankshaft.


Sign in / Sign up

Export Citation Format

Share Document