scholarly journals PEMBUATAN ALAT TPS (THROTTLE POSITION SENSOR) CHECKER PADA SEPEDA MOTOR HONDA REVO PGM-FI BERBASIS IOT MENGGUNAKAN MODUL ESP32

Technologic ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Gigih Pramudito ◽  
Lea Nika Fibriani ◽  
Syahroni Syahroni

Berkembangnya teknologi membuat mesin kendaraan sekarang menggunakan sistem injeksi yang dilengkapi dengan berbagai komponen dan sensor untuk mendukung proses pembakaran di ruang mesin. Salah satunya yaitu TPS (Throttle Position Sensor). Sensor TP berfungsi untuk mendeteksi adanya perubahan posisi pada throttle gas. Adanya kerusakan pada sensor TP dapat mempengaruhi performa dari kendaraan. Umumnya pengecekan sensor TP dilakukan menggunakan multimeter yang tentunya sulit untuk dilakukan, karena posisi dari sensor TP yang sulit dijangkau. Maka dari itu dibutuhkan alat yang mampu digunakan untuk mengecek kondisi sensor TP secara efisien. TPS Checker merupakan alat yang digunakan untuk mengecek kondisi sensor TP melalui pengukuran tegangan pada input dan output sensor TP serta hambatannya sesuai dengan kondisi bukaan throttle gas. Hasil pengukuran didapat dari rumus pembagi tegangan (voltage divider). Alat TPS checker dibuat dengan menggunakan microcontroller ESP32 yang dapat dihubungkan dengan smartphone untuk menampilkan hasil pengukuran secara real-time melalui aplikasi Blynk serta dilengkapi fitur reset untuk menghapus data kerusakan yang sudah terdeteksi dan tersimpan di Engine Control Unit (ECU). TPS Checker dapat digunakan untuk mengukur sensor TP pada seluruh kendaraan injeksi, namun penulis melakukan pengujian TPS Checker menggunakan sepeda motor Honda Revo PGM-FI. Setiap tipe kendaraan memiliki standar pengukuran yang berbeda-beda. Standar pengukuran pada motor Honda Revo PGM-FI yaitu tegangan sensor TP sebesar 4,75V – 5,25V dan hambatan berada pada rentang 0 – 5K Ohm. Dari hasil pengujian TPS Checker dapat disimpulkan bahwa alat ini mampu digunakan untuk melakukan pengukuran pada sensor TP serta menghapus kode kerusakan pada sepeda motor Honda Revo PGM-FI.

Aerospace ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 158
Author(s):  
Seonghee Kho ◽  
Hyunbum Park

In this study, a real-time engine model and a test bench were developed to verify the performance of the EECU (electronic engine control unit) of a turbofan engine. The target engine is a DGEN 380 developed by the Price Induction company. The functional verification of the test bench was carried out using the developed test bench. An interface and interworking test between the test bench and the developed EECU was carried out. After establishing the verification test environments, the startup phase control logic of the developed EECU was verified using the real-time engine model which modeled the startup phase test data with SIMULINK. Finally, it was confirmed that the developed EECU can be used as a real-time engine model for the starting section of performance verification.


2020 ◽  
Vol 20 (1) ◽  
pp. 16
Author(s):  
Arnez Pramesti Ardi ◽  
Ilham Sukma Aulia ◽  
Rizky Ardianto Priramadhi ◽  
Denny Darlis

Based on data from the Indonesian Traffic Corps by September 2019, the number of car accidents was dominated by rear-hit crashes with 6,966 accidents. Most of these accidents occurred during car convoys. It needs a car-to-car communication to increase driver awareness. One of the technologies that can be applied is Visible Light Communication (VLC) and infrared communication. The transmitted data are the vehicle speed data, throttle position, and brake stepping indicator. The data are obtained by reading the Engine Control Unit (ECU) in the car. The data are packaged from the three data and sent to other cars at day and night using VLC and infrared communication. The experimental results show that in a communication system that uses VLC, data can be exchanged between cars during the day up to 2 meters and at night up to 11 meters. Otherwise, in infrared communication, vehicles can communicate during the day up to 2 meters and at night up to 0.7 meter. The test was also carried out with some conditions such as rain, smoke, passers, and other vehicle lights.


2011 ◽  
Vol 130-134 ◽  
pp. 343-346
Author(s):  
Meng Jun Ye ◽  
Chang Hui Hu

The document introduces the self-tracing smart car system based on Fressscale MC9S12XS128 as the core control unit. Focus on the design of electromagnetic sensor unit, describe in detail differential electromagnetic sensor unit and position electromagnetic sensor unit, and then describe the speed adjusting system. Test shows that smart car based on position sensor unit have good forward-looking, real-time and accurate response.


Sign in / Sign up

Export Citation Format

Share Document