Effect of Molecular Weight on Dynamic Mechanical Properties of SKD cis-1,4-Butadiene Rubber

1967 ◽  
Vol 40 (2) ◽  
pp. 517-521
Author(s):  
A. I. Marei ◽  
E. A. Sidorovich

Abstract In the high-elastic temperature range the molecular weight has a considerable effect on the dynamic mechanical properties of linear (uncrosslinked) SKD cis-1, 4-butadiene rubber. In this temperature range an unequivocal correlation exists between the rebound resilience at a given temperature and the viscosity average molecular weight, and the determination of the resilience can therefore be recommended as a rapid method of finding the molecular weight of SKD. A similarity is found in the dynamic mechanical behavior of rubbers of different molecular weights in the high-elastic temperature range. In the low-temperature range an increase in the molecular weight of crystalline polymers of SKD is accompanied by an impairment of their elastic properties.

2021 ◽  
pp. 096739112110313
Author(s):  
Ahmed Abdel-Hakim ◽  
Soma A el-Mogy ◽  
Ahmed I Abou-Kandil

Blending of rubber is an important route to modify properties of individual elastomeric components in order to obtain optimum chemical, physical, and mechanical properties. In this study, a novel modification of styrene butadiene rubber (SBR) is made by employing acrylic rubber (ACM) to obtain blends of outstanding mechanical, dynamic, and oil resistance properties. In order to achieve those properties, we used a unique vulcanizing system that improves the crosslink density between both polymers and enhances the dynamic mechanical properties as well as its resistance to both motor and break oils. Static mechanical measurements, tensile strength, elongation at break, and hardness are improved together with dynamic mechanical properties investigated using dynamic mechanical analyses. We also proposed a mechanism for the improvement of crosslink density and consequently oil resistance properties. This opens new opportunities for using SBR/ACM blends in oil sealing applications that requires rigorous mechanical and dynamic mechanical properties.


2007 ◽  
Vol 351 ◽  
pp. 171-175 ◽  
Author(s):  
Yan Bing Wang ◽  
Zhi Xiong Huang ◽  
Yan Qin ◽  
Ming Du ◽  
Lian Meng Zhang

In this paper, a three-phase composite with electrically conductive carbon black (ECCB) and piezoelectric ceramic particles, PMN, embedded into butyl (PMN/ECCB/IIR) was prepared by simple blend and mold-press process. Dynamic mechanical properties with various ECCB loading were tested by dynamic mechanical analysis (DMA). DMA shows that the ECCB loading has remarkable effect on the dynamic mechanical properties of the three-phase composite. The temperature range of loss factor (tanδ) above 0.3 the composite was broadened by almost 100°C and the maximum of loss factor shifts to higher temperature in the testing temperature range respectively with increasing the ECCB loading. The piezoelectric damping theory was used to explain the experimental results. The three-phase composites with proper composition can be used as high damping polymer materials.


Author(s):  
L. P. Serino ◽  
M. G. Cascone ◽  
L. Lazzeri ◽  
P. A. Torzilli ◽  
S. A. Maher

The objective of this study was to design a partly-degradable scaffold to repair cartilage defects. The scaffold, based on poly(vinyl alcohol), PVA, was intended to maintain long-term mechanical integrity and to facilitate cell proliferation via bioactive agent release from contained microparticles, made from either alginate, ALG or poly(lactic-co-glycolic acid), PLGA. The aim of this study was to characterize the morphological features and mechanical behaviour of composite scaffolds as a function of microparticle type and percent content. Our hypothesis was that the dynamic mechanical properties (Dynamic Modulus and Phase Angle) of the composite scaffold would not be affected by microparticle type, but that Dynamic Modulus would increase as a function of increased microparticle content. Scanning Electron Microscopy confirmed that the manufacturing process homogenously dispersed microspheres within the scaffolds. For pure PVA samples Dynamic Modulus ranged from 66±3 kPa at 0.01 Hz to 83±3 kPa at 50 Hz. As ALG microsphere content increased from 25% to 75%, Dynamic Modulus ranged from 92±5 kPa at 0.01 Hz to 153±19 kPa at 50 Hz. As the microsphere content increased from 25% to 75% PLGA, Dynamic Modulus ranged from 85±9 kPa at 0.01 Hz, to 157±16 kPa at 50 Hz. As expected, Dynamic Modulus increased with increasing test frequencies. For pure PVA specimens Phase Angle ranged from 4.3±0.8 degrees at 0.01 Hz to 12±1.2 degrees at 50 Hz. Phase Angle was not affected by microsphere content. In conclusion, the addition of microspheres affected the dynamic mechanical behavior, in particular Dynamic Modulus, of PVA scaffolds. However, the dynamic mechanical properties were not affected by the polymer from which the microspheres were manufactured. These findings suggest that microsphere type can be chosen to optimize the inclusion of bioactive factors, without detrimentally affecting the mechanical properties of the composite scaffold. It also suggests that % content of included microspheres can be used to modulate the mechanical properties of the scaffold at time zero.


Sign in / Sign up

Export Citation Format

Share Document