Viscoelastic Behavior of Segmented Elastomers

1967 ◽  
Vol 40 (4) ◽  
pp. 1105-1110 ◽  
Author(s):  
Stuart L. Cooper ◽  
Arthur V. Tobolsky

Abstract Viscoelastic behavior of linear segmented elastomers was examined. The unusual properties found in spandex systems are also observable in hydrocarbon block co-polymers, indicating that hydrogen bonding interactions are perhaps not essential. Low temperature properties of segmented systems are governed by the structural nature of the associated flexible segments, which determines the value of the major glass transition temperature (Tg). It appears that an association of the hard segments provides a broad temperature range of enhanced rubbery modulus. This occurs between the major Tg and a secondary high temperature transition.

Author(s):  
M. I. Valueva ◽  
I. V. Zelenina ◽  
M. A. Zharinov ◽  
M. A. Khaskov

The article presents results of studies of experimental carbon plastics based on thermosetting PMRpolyimide binder. Сarbon fiber reinforced plastics (CFRPs) are made from prepregs prepared by melt and mortar technologies, so the rheological properties of the polyimide binder were investigated. The heat resistance of carbon plastics was researched and its elastic-strength characteristics were determined at temperatures up to 320°С. The fundamental possibility of manufacturing carbon fiber from prepregs based on polyimide binder, obtained both by melt and mortar technologies, is shown. CFRPs made from two types of prepregs have a high glass transition temperature: 364°C (melt) and 367°C (solution), with this temperature remaining at the 97% level after boiling, and also at approximately the same (86–97%) level of conservation of elastic strength properties at temperature 300°С.


2011 ◽  
Vol 71-78 ◽  
pp. 3591-3594 ◽  
Author(s):  
Xiao Lu Wang ◽  
Xiao Xiong Zha

Experimental results on tensile mechanics properties of GFRP bars at high temperatures are present in this paper. Thirty commercially produced GFRP tensile specimens of 8mm diameter were tested at high temperature ranging from 10°Cup to 500°C. Tensile test result indicates that, the ultimate tensile stress has significant reduction at two temperature zones, one is glass transition temperature of epoxy resin (80-120°C), with strength degradation 22%, the second is the soften temperature of glass fibers(about 400°C), the strength decrease drastically with almost linear rate and remained 33% residual strength at 500°C. The elastic modulus remained unchanged until glass transition temperature of epoxy resin, and the modulus declined linearly with the temperature elevating. Stress-strain relationships of GFRP bars exhibit liner performance even at high temperatures.


2018 ◽  
Vol 53 (2) ◽  
pp. 155-171 ◽  
Author(s):  
Alice Courtois ◽  
Martin Hirsekorn ◽  
Maria Benavente ◽  
Agathe Jaillon ◽  
Lionel Marcin ◽  
...  

This paper presents a viscoelastic temperature- and degree-of-cure-dependent constitutive model for an epoxy resin. Multi-temperature relaxation tests on fully and partially cured rectangular epoxy specimens were conducted in a dynamic mechanical analysis apparatus with a three-point bending clamp. Master curves were constructed from the relaxation test results based on the time–temperature superposition hypothesis. The influence of the degree of cure was included through the cure-dependent glass transition temperature which was used as reference temperature for the shift factors. The model parameters were optimized by minimization of the differences between the model predictions and the experimental data. The model predictions were successfully validated against an independent creep-like strain history over which the temperature varied.


2013 ◽  
Vol 815 ◽  
pp. 639-644 ◽  
Author(s):  
Pei Ying Liu ◽  
Zhi Hong Jiang

Wood-plastic composite is a kind of viscoelastic materials. This paper presents the dynamic viscoelastic behavior of WPCs at different temperature, frequency and bamboo flours levels. The storage modulus decreased with the rise of temperature, the loss modulus and tanδ increased as temperature increased but decreased after reaching the peak. Frequency had a little influence on storage modulus and loss modulus, but the glass transition temperature increased with the increase of frequency, while the tanδ decreased. The glass transition temperature of this kind WPCs is about 85°C. The addition of bamboo flours had a positive effect on the dynamic viscoelastic behavior. From the results above, the activation energy of the WPCs was measured using an Arrhenius relationship to investigate the interphase between the wood and plastic.


Sign in / Sign up

Export Citation Format

Share Document