Kinetics of Sulfur-Free Thiuram Vulcanization

1972 ◽  
Vol 45 (4) ◽  
pp. 945-954 ◽  
Author(s):  
Vratislav Ducháček

Abstract Sulfur-free thiuram vulcanization has been investigated at temperatures from 160° to 190° C over 0.5 to 600 min. Continuous measurements in a VUREMO curemeter were used to estimate the extent of crosslinking, which was plotted against cure time. Simultaneously the values of the network chain density were calculated from swelling measurements on the vulcanizates. The cure curves show clearly an induction period (ti), then fast crosslinking, a partial degradation, a “long-time” crosslinking, and finally a slow, limited degradation. Apart from the induction period, the kinetic graphs are satisfactory represented by a rate equation assuming three independent first-order reactions: fast crosslinking, degradation, and slow crosslinking. The rate equation contains seven kinetic parameters. Over the temperature range studied, there is no difference between the values of activation energy for fast crosslinking, for degradation, for slow crosslinking, and for ti−1. Due to the presence of thiourea, the values of the induction period, the rate constant, and the extent of slow crosslinking are decreased. Simultaneously the activation energies calculated from degradation and slow crosslinking are significantly increased. On the basis of the above results, the mechanism of the sulfur-free thiuram vulcanization, in which ionic and radical reactions take place, is discussed.

1963 ◽  
Vol 36 (3) ◽  
pp. 835-843 ◽  
Author(s):  
R. Russell ◽  
D. A. Smith ◽  
G. N. Welding

Abstract Thiazole-accelerated sulfur vulcanization of natural rubber gum stocks has been investigated at temperatures from 110° to 140° C for times over the range 1 to 104 min. Swelling measurements on the vulcanizates were used to estimate the contribution of chemical reactions to the network chain density, (ρMc−1)chem which was plotted against cure time. The kinetic graphs show clearly an induction period (t0), then fast crosslinking, a slow limited degradation, and finally a “long-time” crosslinking reaction. Apart from the induction period, each of the kinetic graphs is satisfactorily represented by a rate equation assuming three independent additive reactions: first order crosslinking, first order partial degradation, and a long-time reaction assumed to be zero order. The method has been used to compare MBT and MBTS at equal concentration. One consistent difference is the increase of induction period with MBTS in place of MBT, accompanied by a somewhat greater increase of time of cure to maximum network density. Also the completed contributions (Xand Δ) from the initial crosslinking reaction and the degradation reaction, respectively, are greater with MBTS than with MBT. Over the temperature range studied there is no difference between MBT and MBTS in the activation energies for crosslinking, or for t0−1 or for the long-time reaction, but MBTS has a higher activation energy for degradation than MBT. With rising temperature of cure, Δ increases towards X with each accelerator.


1983 ◽  
Vol 48 (11) ◽  
pp. 3202-3208 ◽  
Author(s):  
Zdeněk Musil ◽  
Vladimír Pour

The kinetics of the reduction of nitrogen oxide by carbon monoxide on CuO/Al2O3 catalyst (8.36 mass % CuO) were determined at temperatures between 413 and 473 K. The reaction was found to be first order in NO and zero order in CO. The observed kinetics are consistent with a rate equation derived from a mechanism proposed on the basis of IR spectroscopic measurements.


1976 ◽  
Vol 29 (2) ◽  
pp. 443 ◽  
Author(s):  
MA Haleem ◽  
MA Hakeem

Kinetic data are reported for the decarboxylation of β-resorcylic acid in resorcinol and catechol for the first time. The reaction is first order. The observation supports the view that the decomposition proceeds through an intermediate complex mechanism. The parameters of the absolute reaction rate equation are calculated.


1960 ◽  
Vol 33 (2) ◽  
pp. 335-341
Author(s):  
Walter Scheele ◽  
Karl-Heinz Hillmer

Abstract As a complement to earlier investigations, and in order to examine more closely the connection between the chemical kinetics and the changes with vulcanization time of the physical properties in the case of vulcanization reactions, we used thiuram vulcanizations as an example, and concerned ourselves with the dependence of stress values (moduli) at different degrees of elongation and different vulcanization temperatures. We found: 1. Stress values attain a limiting value, dependent on the degree of elongation, but independent of the vulcanization temperature at constant elongation. 2. The rise in stress values with the vulcanization time is characterized by an initial delay, which, however, is practically nonexistent at higher temperatures. 3. The kinetics of the increase in stress values with vulcanization time are both qualitatively and quantitatively in accord with the dependence of the reciprocal equilibrium swelling on the vulcanization time; both processes, after a retardation, go according to the first order law and at the same rate. 4. From the temperature dependence of the rate constants of reciprocal equilibrium swelling, as well as of the increase in stress, an activation energy of 22 kcal/mole can be calculated, in good agreement with the activation energy of dithiocarbamate formation in thiuram vulcanizations.


2017 ◽  
Vol 23 (4) ◽  
pp. 495-506 ◽  
Author(s):  
Larissa Falleiros ◽  
Bruna Cabral ◽  
Janaína Fischer ◽  
Carla Guidini ◽  
Vicelma Cardoso ◽  
...  

The immobilization and stabilization of Aspergillus oryzae ?-galactosidase on Duolite??A568 was achieved using a combination of physical adsorption, incubation step in buffer at pH 9.0 and cross-linking with glutaraldehyde and in this sequence promoted a 44% increase in enzymatic activity as compared with the biocatalyst obtained after a two-step immobilization process (adsorption and cross-linking). The stability of the biocatalyst obtained by three-step immobilization process (adsorption, incubation in buffer at pH 9.0 and cross-linking) was higher than that obtained by two-steps (adsorption and cross-linking) and for free enzyme in relation to pH, storage and reusability. The immobilized biocatalyst was characterized with respect to thermal stability in the range 55-65 ?C. The kinetics of thermal deactivation was well described by the first-order model, which resulted in the immobilized biocatalyst activation energy of thermal deactivation of 71.03 kcal/mol and 5.48 h half-life at 55.0 ?C.


2001 ◽  
Vol 36 (3) ◽  
pp. 589-604 ◽  
Author(s):  
Julian M. Dust ◽  
Christopher S. Warren

Abstract The kinetics of the alkaline rearrangement of O,O-dimethyl-(2,2,2-trichloro-1- hydroxyethyl)phosphonate, (trichlorfon, 1), the active insecticidal component in such formulations as Dylox, was followed at 25±0.5°C by high pressure liquid chromatography (UV-vis detector, 210 nm). The rearrangement product, O,Odimethyl- O-(2,2-dichloroethenyl)phosphate (dichlorovos, 2), which is a more potent biocide than trichlorfon, undergoes further reaction, and the kinetics, consequently, cannot be treated by a standard pseudo-first-order plot. A two-point van't Hoff (initial rates) method was used to obtain pseudo-first-order rate constants (kѱ) at 25, 35 and 45°C: 2.6 × 10-6, 7.4 × 10-6 and 2.5 × 10-5 s-1, respectively. Arrhenius treatment of this data gave an activation energy (Ea) of 88 kJ·mol-1 with a pre-exponential factor (A) of 5.5 × 109 s-1. Kinetic trials at pH 8.0 using phosphate and tris buffer systems show no buffer catalysis in this reaction and indicate that the rearrangement is subject to specific base catalysis. Estimates are reported for pseudo-first-order half-lives for trichlorfon at pH 8.0 for environmental conditions in aqueous systems in the Corner Brook region of western Newfoundland, part of the site of a recent trichlorfon aerial spray program.


1998 ◽  
Vol 512 ◽  
Author(s):  
A. Y. Polyakov ◽  
N. B. Smirnov ◽  
A. V. Govorkov ◽  
J. M. Redwing

ABSTRACTPhotocurrent transients due to illumination by above-bandgap and subbandgap light were studied for Si doped and undoped films of AlGaN grown by MOCVD on sapphire and having compositions ranging from 0% to 60% of Al. It is shown that in Si doped layers the decay of photoconductivity takes extremely long time (hundreds and thousands seconds, depending on temperature, composition and illumination conditions). Both the kinetics of rise and fall of photoconductivity are best described by stretched exponents. The characteristic decay times are virtually temperature independent for temperatures below 270–290K and have activation energy of 0.14–0.26 eV (depending on composition) for higher temperatures. The decay times become longer with decreased light intensity and increase when above-bandgap light excitation is replaced by subbandgap light excitation (the photocurrent values from which the decay starts being equivalent). The results cannot be quantitatively explained by the effects of changing of the quasi-Fermi level position well known for DX-centers in AlGaAs. No persistent photoconductivity could be observed in high resistivity undoped AlGaN films with 5%, 15% and 25% of Al.


1950 ◽  
Vol 28b (7) ◽  
pp. 358-372
Author(s):  
Cyrias Ouellet ◽  
Adrien E. Léger

The kinetics of the polymerization of acetylene to cuprene on a copper catalyst between 200° and 300 °C. have been studied manometrically in a static system. The maximum velocity of the autocatalytic reaction shows a first-order dependence upon acetylene pressure. The reaction is retarded in the presence of small amounts of oxygen but accelerated by preoxidation of the catalyst. The apparent activation energy, of about 10 kcal. per mole for cuprene growth between 210° and 280 °C., changes to about 40 kcal. per mole above 280 °C. at which temperature a second reaction seems to set in. Hydrogen, carbon monoxide, or nitric oxide has no effect on the reaction velocity. Series of five successive seedings have been obtained with cuprene originally grown on cuprite, and show an effect of aging of the cuprene.


1969 ◽  
Vol 114 (4) ◽  
pp. 719-724 ◽  
Author(s):  
Charles Phelps ◽  
Eraldo Antonini

1. Static titrations reveal an exact stoicheiometry between various haem derivatives and apoperoxidase prepared from one isoenzyme of the horseradish enzyme. 2. Carbon monoxide–protohaem reacts rapidly with apoperoxidase and the kinetics can be accounted for by a mechanism already applied to the reaction of carbon monoxide–haem derivatives with apomyoglobin and apohaemoglobin. 3. According to this mechanism a complex is formed first whose combination and dissociation velocity constants are 5×108m−1sec.−1 and 103sec.−1 at pH9·1 and 20°. The complex is converted into carbon monoxide–haemoprotein in a first-order process with a rate constant of 235sec.−1 for peroxidase and 364sec.−1 for myoglobin at pH9·1 and 20°. 4. The effects of pH and temperature were examined. The activation energy for the process of complex-isomerization is about 13kcal./mole. 5. The similarity in the kinetics of the reactions of carbon monoxide–haem with apoperoxidase and with apomyoglobin suggests structural similarities at the haem-binding sites of the two proteins.


2011 ◽  
Vol 233-235 ◽  
pp. 481-486
Author(s):  
Wen Bo Zhao ◽  
Ning Zhao ◽  
Fu Kui Xiao ◽  
Wei Wei

The synthesis of dimethyl carbonate (DMC) from urea and methanol includes two main reactions: one amino of urea is substituted by methoxy to produce the intermediate methyl carbamate (MC) which further converts to DMC via reaction with methanol again. In a stainless steel autoclave, the kinetics of these reactions was separately investigated without catalyst and with Zn-containing catalyst. Without catalyst, for the first reaction, the reaction kinetics can be described as first order with respect to the concentrations of methanol and methyl carbamate (MC), respectively. For the second reaction, the results exhibit characteristics of zero-order reaction. Over Zn-containing catalyst, the first reaction is neglected in the kinetics model since its rate is much faster than second reaction. After the optimization of reaction condition, the macro-kinetic parameters of the second reaction are obtained by fitting the experimental data to a pseudo-homogenous model, in which a side reaction of DMC synthesis is incorporated since it decreases the yield of DMC drastically at high temperature. The activation energy of the reaction from MC to DMC is 104 KJ/mol while that of the side reaction of DMC is 135 KJ/mol.


Sign in / Sign up

Export Citation Format

Share Document