Investigating the transferability and toxicity of various forms of the plasmid in HEK293 cells as hosts

2021 ◽  
Vol 12 (2) ◽  
pp. 114-121
Author(s):  
M Hashem Abadi ◽  
HA Sasan ◽  
M Amandadi ◽  
M Ansari ◽  
A Samareh-Gholami
Keyword(s):  
PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e84062 ◽  
Author(s):  
Yu-Cheng Tu ◽  
Duen-Yi Huang ◽  
Shine-Gwo Shiah ◽  
Jang-Shiun Wang ◽  
Wan-Wan Lin

2021 ◽  
Vol 22 (13) ◽  
pp. 7205
Author(s):  
Matheus V. C. Grahl ◽  
Augusto F. Uberti ◽  
Valquiria Broll ◽  
Paula Bacaicoa-Caruso ◽  
Evelin F. Meirelles ◽  
...  

Infection by Proteus mirabilis causes urinary stones and catheter incrustation due to ammonia formed by urease (PMU), one of its virulence factors. Non-enzymatic properties, such as pro-inflammatory and neurotoxic activities, were previously reported for distinct ureases, including that of the gastric pathogen Helicobacter pylori. Here, PMU was assayed on isolated cells to evaluate its non-enzymatic properties. Purified PMU (nanomolar range) was tested in human (platelets, HEK293 and SH-SY5Y) cells, and in murine microglia (BV-2). PMU promoted platelet aggregation. It did not affect cellular viability and no ammonia was detected in the cultures’ supernatants. PMU-treated HEK293 cells acquired a pro-inflammatory phenotype, producing reactive oxygen species (ROS) and cytokines IL-1β and TNF-α. SH-SY5Y cells stimulated with PMU showed high levels of intracellular Ca2+ and ROS production, but unlike BV-2 cells, SH-SY5Y did not synthesize TNF-α and IL-1β. Texas Red-labeled PMU was found in the cytoplasm and in the nucleus of all cell types. Bioinformatic analysis revealed two bipartite nuclear localization sequences in PMU. We have shown that PMU, besides urinary stone formation, can potentially contribute in other ways to pathogenesis. Our data suggest that PMU triggers pro-inflammatory effects and may affect cells beyond the renal system, indicating a possible role in extra-urinary diseases.


2021 ◽  
Vol 71 ◽  
pp. 18-24
Author(s):  
Michela Pulix ◽  
Vera Lukashchuk ◽  
Daniel C Smith ◽  
Alan J Dickson

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 749
Author(s):  
Julia Butt ◽  
Rajagopal Murugan ◽  
Theresa Hippchen ◽  
Sylvia Olberg ◽  
Monique van Straaten ◽  
...  

The emerging SARS-CoV-2 pandemic entails an urgent need for specific and sensitive high-throughput serological assays to assess SARS-CoV-2 epidemiology. We, therefore, aimed at developing a fluorescent-bead based SARS-CoV-2 multiplex serology assay for detection of antibody responses to the SARS-CoV-2 proteome. Proteins of the SARS-CoV-2 proteome and protein N of SARS-CoV-1 and common cold Coronaviruses (ccCoVs) were recombinantly expressed in E. coli or HEK293 cells. Assay performance was assessed in a COVID-19 case cohort (n = 48 hospitalized patients from Heidelberg) as well as n = 85 age- and sex-matched pre-pandemic controls from the ESTHER study. Assay validation included comparison with home-made immunofluorescence and commercial enzyme-linked immunosorbent (ELISA) assays. A sensitivity of 100% (95% CI: 86–100%) was achieved in COVID-19 patients 14 days post symptom onset with dual sero-positivity to SARS-CoV-2 N and the receptor-binding domain of the spike protein. The specificity obtained with this algorithm was 100% (95% CI: 96–100%). Antibody responses to ccCoVs N were abundantly high and did not correlate with those to SARS-CoV-2 N. Inclusion of additional SARS-CoV-2 proteins as well as separate assessment of immunoglobulin (Ig) classes M, A, and G allowed for explorative analyses regarding disease progression and course of antibody response. This newly developed SARS-CoV-2 multiplex serology assay achieved high sensitivity and specificity to determine SARS-CoV-2 sero-positivity. Its high throughput ability allows epidemiologic SARS-CoV-2 research in large population-based studies. Inclusion of additional pathogens into the panel as well as separate assessment of Ig isotypes will furthermore allow addressing research questions beyond SARS-CoV-2 sero-prevalence.


2021 ◽  
Vol 22 (3) ◽  
pp. 1175
Author(s):  
Ryuta Inukai ◽  
Kanako Mori ◽  
Keiko Kuwata ◽  
Chihiro Suzuki ◽  
Masatoshi Maki ◽  
...  

Apoptosis-linked gene 2 (ALG-2, also known as PDCD6) is a member of the penta-EF-hand (PEF) family of Ca2+-binding proteins. The murine gene encoding ALG-2 was originally reported to be an essential gene for apoptosis. However, the role of ALG-2 in cell death pathways has remained elusive. In the present study, we found that cell death-inducing p53 target protein 1 (CDIP1), a pro-apoptotic protein, interacts with ALG-2 in a Ca2+-dependent manner. Co-immunoprecipitation analysis of GFP-fused CDIP1 (GFP-CDIP1) revealed that GFP-CDIP1 associates with tumor susceptibility gene 101 (TSG101), a known target of ALG-2 and a subunit of endosomal sorting complex required for transport-I (ESCRT-I). ESCRT-I is a heterotetrameric complex composed of TSG101, VPS28, VPS37 and MVB12/UBAP1. Of diverse ESCRT-I species originating from four VPS37 isoforms (A, B, C, and D), CDIP1 preferentially associates with ESCRT-I containing VPS37B or VPS37C in part through the adaptor function of ALG-2. Overexpression of GFP-CDIP1 in HEK293 cells caused caspase-3/7-mediated cell death. In addition, the cell death was enhanced by co-expression of ALG-2 and ESCRT-I, indicating that ALG-2 likely promotes CDIP1-induced cell death by promoting the association between CDIP1 and ESCRT-I. We also found that CDIP1 binds to vesicle-associated membrane protein-associated protein (VAP)A and VAPB through the two phenylalanines in an acidic tract (FFAT)-like motif in the C-terminal region of CDIP1, mutations of which resulted in reduction of CDIP1-induced cell death. Therefore, our findings suggest that different expression levels of ALG-2, ESCRT-I subunits, VAPA and VAPB may have an impact on sensitivity of anticancer drugs associated with CDIP1 expression.


2020 ◽  
Vol 22 (1) ◽  
pp. 22
Author(s):  
Matthias Gorecki ◽  
Simon F. Müller ◽  
Regina Leidolf ◽  
Joachim Geyer

Background: The muscarinic receptor antagonist trospium chloride (TCl) is used for pharmacotherapy of the overactive bladder syndrome. TCl is a hydrophilic positively charged drug. Therefore, it has low permeability through biomembranes and requires drug transporters for distribution and excretion. In humans, the organic cation transporters OCT1 and OCT2 and the multidrug and toxin extrusion MATE1 and MATE2-K carriers showed TCl transport. However, their individual role for distribution and excretion of TCl is unclear. Knockout mouse models lacking mOct1/mOct2 or mMate1 might help to clarify their role for the overall pharmacokinetics of TCl. Method: In preparation of such experiments, TCl transport was analyzed in HEK293 cells stably transfected with the mouse carriers mOct1, mOct2, mMate1, and mMate2, respectively. Results: Mouse mOct1, mOct2, and mMate1 showed significant TCl transport with Km values of 58.7, 78.5, and 29.3 µM, respectively. In contrast, mMate2 did not transport TCl but showed MPP+ transport with Km of 60.0 µM that was inhibited by the drugs topotecan, acyclovir, and levofloxacin. Conclusion: TCl transport behavior as well as expression pattern were quite similar for the mouse carriers mOct1, mOct2, and mMate1 compared to their human counterparts.


2021 ◽  
Vol 22 (3) ◽  
pp. 1391
Author(s):  
Andrey Kropotov ◽  
Veronika Kulikova ◽  
Kirill Nerinovski ◽  
Alexander Yakimov ◽  
Maria Svetlova ◽  
...  

Nicotinamide riboside (NR), a new form of vitamin B3, is an effective precursor of nicotinamide adenine dinucleotide (NAD+) in human and animal cells. The introduction of NR into the body effectively increases the level of intracellular NAD+ and thereby restores physiological functions that are weakened or lost in experimental models of aging and various pathologies. Despite the active use of NR in applied biomedicine, the mechanism of its transport into mammalian cells is currently not understood. In this study, we used overexpression of proteins in HEK293 cells, and metabolite detection by NMR, to show that extracellular NR can be imported into cells by members of the equilibrative nucleoside transporter (ENT) family ENT1, ENT2, and ENT4. After being imported into cells, NR is readily metabolized resulting in Nam generation. Moreover, the same ENT-dependent mechanism can be used to import the deamidated form of NR, nicotinic acid riboside (NAR). However, NAR uptake into HEK293 cells required the stimulation of its active utilization in the cytosol such as phosphorylation by NR kinase. On the other hand, we did not detect any NR uptake mediated by the concentrative nucleoside transporters (CNT) CNT1, CNT2, or CNT3, while overexpression of CNT3, but not CNT1 or CNT2, moderately stimulated NAR utilization by HEK293 cells.


Sign in / Sign up

Export Citation Format

Share Document