Synthesis, Characterization and TheoreticalStudies of Nand#39;-(4-methoxybenzylidene)benzenesulfonohydrazide

2021 ◽  
Vol 43 (2) ◽  
pp. 212-212
Author(s):  
H G zin Aslan and L tfiye Aydin H G zin Aslan and L tfiye Aydin

Nand#39;-(4-methoxybenzylidene)benzenesulfonohydrazide was synthesized and elemental analysis was conducted; IR, Raman, 1H, and 13C NMR spectral data were recorded. The potential energy surfaces (PES) of the Nand#39;-(4-methoxybenzylidene)benzenesulfonohydrazide molecule were obtained by selected degree of torsional freedom, which varied from 0o to 360and#186; in 4and#186; increments. The conformers were optimized by using a (DFT/B3LYP/6-31G(d,p)) basis set in the gas phase. The eleven conformers in the gas phase of the obtained molecule were determined and the most stable conformer (conformer 1) was re-optimized by three different basis sets of 6-31G(d,p), 6-311G(d,p), and LanL2Dz. HOMO-LUMO analyses were performed. NBO analysis was performed to describe the around of intramolecular charge transfer. The vibrational spectra were measured in solid phase IR and detailed analysis of the vibrational spectra of conformer 1 was done; all the bands of the spectra were interpreted by the use of the potential energy distributions (PED) and the molecular electrostatic potential (MEP) was plotted.

2010 ◽  
Vol 09 (06) ◽  
pp. 963-974 ◽  
Author(s):  
YONGCHUN TONG ◽  
QINGYUN WANG ◽  
DONGQING WU ◽  
YONGCHENG WANG

Gas-phase H2 activation by PtO+ and [Formula: see text] were studied at the density functional level of theory (DFT) using the relativistic effective core potential (RECP) of Stuttgart basis sets on platinum atom and UB3LYP/6-311+G(2d,2p) level on hydrogen and oxygen atoms. Two reaction profiles corresponding to the doublet and quartet multiplicities were investigated in order to ascertain the presence of some spin inversion during the H2 reduction. The electron-transfer reactivity of the reactions were analyzed using the two-state model, and the strongly crossing behavior on the transition state (TS) area were shown. Finally, the actions of frontier molecular orbitals in minimum-energy crossing point (MECP) have been illuminated briefly. These theoretical results can act as a guide to further theoretical and experimental research. H2 activation mediated by metal oxide cations were found to be an exothermic spin-forbidden process resulting from a crossing between quartet and doublet profiles. To evaluate the spin-forbidden process in the reaction pathway, the spin-obit coupling (SOC) matrix elements are calculated at the MECP with the different potential energy surfaces (PESs) and the probability of crossing between the adiabatic potential-energy surfaces during a single pass through the avoided crossing region was described. Therefore, the intersystem crossing (ISC) at crossing points (CP) occur efficiently because of the large SOC (ca. 85.58 cm-1) involved.


2013 ◽  
Vol 446-447 ◽  
pp. 168-171
Author(s):  
Hong Fei Liu ◽  
Xin Min Min ◽  
Hai Xia Yang

The decarbonylation of acetaldehyde assisted by Ni+2, which was selected as a representative system of transition metal ions assisted decarbonylation of acetaldehyde, has been investigated using density functional theory (B3LYP) in conjunction with the 6-31+G** basis sets in C,H,O atoms and Lanl2dz basis sets in Ni atom The geometries and energies of the reactants, intermediates, products and transition states relevant to the reaction were located on the triplet ground potential energy surfaces of [Ni, O, C2,H4]+2. Our calculations indicate the decarbonylation of acetaldehyde takes place through four steps, that is, encounter complexation, CC activation, aldehyde H-shift and nonreactive dissociation, it is that CC activation by Ni+2that lead to the decarbonylation of acetaldehyde.


Sign in / Sign up

Export Citation Format

Share Document