Monitoring image-based processes using a PCA-based control chart and a classification technique

2021 ◽  
pp. 39-52
Author(s):  
Setareh Kazemi ◽  
Seyed Taghi Akhavan Niaki

Machine vision systems are among the novel tools proven to be useful in different applications, among which monitoring and controlling manufacturing processes is one of the most important ones. However, due to the complexity resulted from high-dimensional image data and their inherent correlations, the acquisition of traditional statistical process control tools seems inapplicable. To overcome the shortcomings of the traditional methods in this regard, a statistical model is proposed in this paper which utilizes the concepts of both the PCA-based T2 control chart and the classification methods to develop a tool capable of controlling an image-based process. By defining the warning zones, collected data taken from an image-based process are classified into more than the two classes related to in-control and out-of-control processes. This helps practitioners to define rules to make it easier to realize when the process is getting out of control. Through simulation, the accuracy performance and the speed of four different types of classifiers including linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), kth nearest neighbors (KNN), and support vector machine (SVM) are assessed in different scenarios, based on which the functionality of the proposed approach is evaluated in in-control and out-of-control conditions.

2020 ◽  
Vol 15 ◽  
Author(s):  
Mohanad Mohammed ◽  
Henry Mwambi ◽  
Bernard Omolo

Background: Colorectal cancer (CRC) is the third most common cancer among women and men in the USA, and recent studies have shown an increasing incidence in less developed regions, including Sub-Saharan Africa (SSA). We developed a hybrid (DNA mutation and RNA expression) signature and assessed its predictive properties for the mutation status and survival of CRC patients. Methods: Publicly-available microarray and RNASeq data from 54 matched formalin-fixed paraffin-embedded (FFPE) samples from the Affymetrix GeneChip and RNASeq platforms, were used to obtain differentially expressed genes between mutant and wild-type samples. We applied the support-vector machines, artificial neural networks, random forests, k-nearest neighbor, naïve Bayes, negative binomial linear discriminant analysis, and the Poisson linear discriminant analysis algorithms for classification. Cox proportional hazards model was used for survival analysis. Results: Compared to the genelist from each of the individual platforms, the hybrid genelist had the highest accuracy, sensitivity, specificity, and AUC for mutation status, across all the classifiers and is prognostic for survival in patients with CRC. NBLDA method was the best performer on the RNASeq data while the SVM method was the most suitable classifier for CRC across the two data types. Nine genes were found to be predictive of survival. Conclusion: This signature could be useful in clinical practice, especially for colorectal cancer diagnosis and therapy. Future studies should determine the effectiveness of integration in cancer survival analysis and the application on unbalanced data, where the classes are of different sizes, as well as on data with multiple classes.


2021 ◽  
Vol 13 (3) ◽  
pp. 522
Author(s):  
Dorota Jozwicki ◽  
Puneet Sharma ◽  
Ingrid Mann

Polar Mesospheric Summer Echoes (PMSE) are distinct radar echoes from the Earth’s upper atmosphere between 80 to 90 km altitude that form in layers typically extending only a few km in altitude and often with a wavy structure. The structure is linked to the formation process, which at present is not yet fully understood. Image analysis of PMSE data can help carry out systematic studies to characterize PMSE during different ionospheric and atmospheric conditions. In this paper, we analyze PMSE observations recorded using the European Incoherent SCATter (EISCAT) Very High Frequency (VHF) radar. The collected data comprises of 18 observations from different days. In our analysis, the image data is divided into regions of a fixed size and grouped into three categories: PMSE, ionosphere, and noise. We use statistical features from the image regions and employ Linear Discriminant Analysis (LDA) for classification. Our results suggest that PMSE regions can be distinguished from ionosphere and noise with around 98 percent accuracy.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Noman Naseer ◽  
Nauman Khalid Qureshi ◽  
Farzan Majeed Noori ◽  
Keum-Shik Hong

We analyse and compare the classification accuracies of six different classifiers for a two-class mental task (mental arithmetic and rest) using functional near-infrared spectroscopy (fNIRS) signals. The signals of the mental arithmetic and rest tasks from the prefrontal cortex region of the brain for seven healthy subjects were acquired using a multichannel continuous-wave imaging system. After removal of the physiological noises, six features were extracted from the oxygenated hemoglobin (HbO) signals. Two- and three-dimensional combinations of those features were used for classification of mental tasks. In the classification, six different modalities, linear discriminant analysis (LDA), quadratic discriminant analysis (QDA),k-nearest neighbour (kNN), the Naïve Bayes approach, support vector machine (SVM), and artificial neural networks (ANN), were utilized. With these classifiers, the average classification accuracies among the seven subjects for the 2- and 3-dimensional combinations of features were 71.6, 90.0, 69.7, 89.8, 89.5, and 91.4% and 79.6, 95.2, 64.5, 94.8, 95.2, and 96.3%, respectively. ANN showed the maximum classification accuracies: 91.4 and 96.3%. In order to validate the results, a statistical significance test was performed, which confirmed that thepvalues were statistically significant relative to all of the other classifiers (p< 0.005) using HbO signals.


2018 ◽  
Vol 61 (5) ◽  
pp. 1497-1504
Author(s):  
Zhenjie Wang ◽  
Ke Sun ◽  
Lihui Du ◽  
Jian Yuan ◽  
Kang Tu ◽  
...  

Abstract. In this study, computer vision was used for the identification and classification of fungi on moldy paddy. To develop a rapid and efficient method for the classification of common fungal species found in stored paddy, computer vision was used to acquire images of individual colonies of growing fungi for three consecutive days. After image processing, the color, shape, and texture features were acquired and used in a subsequent discriminant analysis. Both linear (i.e., linear discriminant analysis and partial least squares discriminant analysis) and nonlinear (i.e., random forest and support vector machine [SVM]) pattern recognition models were employed for the classification of fungal colonies, and the results were compared. The results indicate that when using all of the features for three consecutive days, the performance of the nonlinear tools was superior to that of the linear tools, especially in the case of the SVM models, which achieved an accuracy of 100% on the calibration sets and an accuracy of 93.2% to 97.6% on the prediction sets. After sequential selection of projection algorithm, ten common features were selected for building the classification models. The results showed that the SVM model achieved an overall accuracy of 95.6%, 98.3%, and 99.0% on the prediction sets on days 2, 3, and 4, respectively. This work demonstrated that computer vision with several features is suitable for the identification and classification of fungi on moldy paddy based on the form of the individual colonies at an early growth stage during paddy storage. Keywords: Classification, Computer vision, Fungal colony, Feature selection, SVM.


Author(s):  
S. R. Mani Sekhar ◽  
G. M. Siddesh

Machine learning is one of the important areas in the field of computer science. It helps to provide an optimized solution for the real-world problems by using past knowledge or previous experience data. There are different types of machine learning algorithms present in computer science. This chapter provides the overview of some selected machine learning algorithms such as linear regression, linear discriminant analysis, support vector machine, naive Bayes classifier, neural networks, and decision trees. Each of these methods is illustrated in detail with an example and R code, which in turn assists the reader to generate their own solutions for the given problems.


Sign in / Sign up

Export Citation Format

Share Document