scholarly journals Soft ideal topological space and mixed fuzzy soft ideal topological space

2017 ◽  
Vol 37 (1) ◽  
pp. 141-151
Author(s):  
Manash Borah ◽  
Bipan Hazarika

In this paper we introduce fuzzy soft ideal and mixed fuzzy soft ideal topological spaces and some properties of this space. Also we introduce fuzzy soft $I$-open set, fuzzy soft $\alpha$-$I$-open set, fuzzy soft pre-$I$-open set, fuzzy soft semi-$I$-open set and fuzzy soft $\beta$-$I$-open set and discuss some of their properties.

Author(s):  
Hamid Reza Moradi

A nonzero fuzzy open set () of a fuzzy topological space is said to be fuzzy minimal open (resp. fuzzy maximal open) set if any fuzzy open set which is contained (resp. contains) in is either or itself (resp. either or itself). In this note, a new class of sets called fuzzy minimal open sets and fuzzy maximal open sets in fuzzy topological spaces are introduced and studied which are subclasses of open sets. Some basic properties and characterization theorems are also to be investigated.


2019 ◽  
Vol 12 (3) ◽  
pp. 893-905
Author(s):  
Glaisa T. Catalan ◽  
Roberto N. Padua ◽  
Michael Jr. Patula Baldado

Let X be a topological space and I be an ideal in X. A subset A of a topological space X is called a β-open set if A ⊆ cl(int(cl(A))). A subset A of X is called β-open with respect to the ideal I, or βI -open, if there exists an open set U such that (1) U − A ∈ I, and (2) A − cl(int(cl(U))) ∈ I. A space X is said to be a βI -compact space if it is βI -compact as a subset. An ideal topological space (X, τ, I) is said to be a cβI -compact space if it is cβI -compact as a subset. An ideal topological space (X, τ, I) is said to be a countably βI -compact space if X is countably βI -compact as a subset. Two sets A and B in an ideal topological space (X, τ, I) is said to be βI -separated if clβI (A) ∩ B = ∅ = A ∩ clβ(B). A subset A of an ideal topological space (X, τ, I) is said to be βI -connected if it cannot be expressed as a union of two βI -separated sets. An ideal topological space (X, τ, I) is said to be βI -connected if X βI -connected as a subset. In this study, we introduced the notions βI -open set, βI -compact, cβI -compact, βI -hyperconnected, cβI -hyperconnected, βI -connected and βI -separated. Moreover, we investigated the concept β-open set by determining some of its properties relative to the above-mentioned notions.


Author(s):  
Vijayakumari T Et.al

In this paper pgrw-locally closed set, pgrw-locally closed*-set and pgrw-locally closed**-set are introduced. A subset A of a topological space (X,t) is called pgrw-locally closed (pgrw-lc) if A=GÇF where G is a pgrw-open set and F is a pgrw-closed set in (X,t). A subset A of a topological space (X,t) is a pgrw-lc* set if there exist a pgrw-open set G and a closed set F in X such that A= GÇF. A subset A of a topological space (X,t) is a pgrw-lc**-set if there exists an open set G and a pgrw-closed set F such that A=GÇF. The results regarding pgrw-locally closed sets, pgrw-locally closed* sets, pgrw-locally closed** sets, pgrw-lc-continuous maps and pgrw-lc-irresolute maps and some of the properties of these sets and their relation with other lc-sets are established.


2021 ◽  
Vol 18 (24) ◽  
pp. 1443
Author(s):  
T Madhumathi ◽  
F NirmalaIrudayam

Neutrosophy is a flourishing arena which conceptualizes the notion of true, falsity and indeterminancy attributes of an event. In the study of dynamical systems, an orbit is a collection of points related by the evolution function of the dynamical system. Hence in this paper we focus on introducing the concept of neutrosophic orbit topological space denoted as (X, tNO). Also, some of the important characteristics of neutrosophic orbit open sets are discussed with suitable examples. HIGHLIGHTS The orbit in mathematics has an important role in the study of dynamical systems Neutrosophy is a flourishing arena which conceptualizes the notion of true, falsity and indeterminancy attributes of an event. We combine the above two topics and create the following new concept The collection of all neutrosophic orbit open sets under the mapping . we introduce the necessary conditions on the mapping 𝒇 in order to obtain a fixed orbit of a neutrosophic set (i.e., 𝒇(𝝁) = 𝝁) for any neutrosophic orbit open set 𝝁 under the mapping 𝒇


2011 ◽  
Vol 10 (04) ◽  
pp. 687-699
Author(s):  
OTHMAN ECHI ◽  
MOHAMED OUELD ABDALLAHI

An open subset U of a topological space X is called intersection compact open, or ICO, if for every compact open set Q of X, U ∩ Q is compact. A continuous map f of topological spaces will be called spectral if f-1 carries ICO sets to ICO sets. Call a topological space Xhemispectral, if the intersection of two ICO sets of X is an ICO. Let HSPEC be the category whose objects are hemispectral spaces and arrows spectral maps. Let SPEC be the full subcategory of HSPEC whose objects are spectral spaces. The main result of this paper proves that SPEC is a reflective subcategory of HSPEC. This gives a complete answer to Problem BST1 of "O. Echi, H. Marzougui and E. Salhi, Problems from the Bizerte–Sfax–Tunis seminar, in Open Problems in Topology II, ed. E. Pearl (Elsevier, 2007), pp. 669–674."


2020 ◽  
pp. 72-79
Author(s):  
Riad K. Al Al-Hamido ◽  
◽  
◽  
◽  
Luai Salha ◽  
...  

In this paper, A new type of separation axioms in the neutrosophic crisp Topological space named neutrosophic crisp pre separation axioms is going to be defined , in which neutrosophic crisp pre open set and neutrosophic crisp point are to be depended on. Also, relations among them and the other type are going to be found.


2011 ◽  
Vol 83 (2) ◽  
pp. 321-328
Author(s):  
MARÍA MUÑOZ

AbstractLetXbe a topological space. A family ℬ of nonempty open sets inXis called aπ-base ofXif for each open setUinXthere existsB∈ℬ such thatB⊂U. The order of aπ-base ℬ at a pointxis the cardinality of the family ℬx={B∈ℬ:x∈B} and the order of theπ-base ℬ is the supremum of the orders of ℬ at each pointx∈X. A classical theorem of Shapirovskiĭ [‘Special types of embeddings in Tychonoff cubes’, in:Subspaces of Σ-Products and Cardinal Invariants, Topology, Coll. Math. Soc. J. Bolyai, 23 (North-Holland, Amsterdam, 1980), pp. 1055–1086; ‘Cardinal invariants in compact Hausdorff spaces’,Amer. Math. Soc. Transl.134(1987), 93–118] establishes that the minimum order of aπ-base is bounded by the tightness of the space when the space is compact. Since then, there have been many attempts at improving the result. Finally, in [‘The projectiveπ-character bounds the order of aπ-base’,Proc. Amer. Math. Soc.136(2008), 2979–2984], Juhász and Szentmiklóssy proved that the minimum order of aπ-base is bounded by the ‘projectiveπ-character’ of the space for any topological space (not only for compact spaces), improving Shapirovskiĭ’s theorem. The projectiveπ-character is in some sense an ‘external’ cardinal function. Our purpose in this paper is, on the one hand, to give bounds of the projectiveπ-character using ‘internal’ topological properties of the subspaces on compact spaces. On the other hand, we give a bound on the minimum order of aπ-base using other cardinal functions in the frame of general topological spaces. Open questions are posed.


1983 ◽  
Vol 48 (3) ◽  
pp. 610-622 ◽  
Author(s):  
Iraj Kalantari ◽  
J. B. Remmel

In [5], Metakides and Nerode introduced the study of recursively enumerable (r.e.) substructures of a recursively presented structure. The main line of study presented in [5] is to examine the effective content of certain algebraic structures. In [6], Metakides and Nerode studied the lattice of r.e. subspaces of a recursively presented vector space. This lattice was later studied by Kalantari, Remmel, Retzlaff and Shore. Similar studies have been done by Metakides and Nerode [7] for algebraically closed fields, by Remmel [10] for Boolean algebras and by Metakides and Remmel [8] and [9] for orderings. Kalantari and Retzlaff [4] introduced and studied the lattice of r.e. subsets of a recursively presented topological space. Kalantari and Retzlaff consideredX, a topological space with ⊿, a countable basis. This basis is coded into integers and with the help of this coding, r.e. subsets ofωgive rise to r.e. subsets ofX. The notion of “recursiveness” of a topological space is the natural next step which gives rise to the question of what should be the “degree” of an r.e. open subset ofX? It turns out that any r.e. open set partitions ⊿; into four sets whose Turing degrees become central in answering the question raised above.In this paper we show that the degrees of the elements of the partition of ⊿ imposed by an r.e. open set can be “controlled independently” in a sense to be made precise in the body of the paper. In [4], Kalantari and Retzlaff showed that givenAany r.e. set andany r.e. open subset ofX, there exists an r.e. open set ℋ which is a subset ofand is dense in(in a topological sense) and in whichAis coded. This shows that modulo a nowhere dense set, an r.e. open set can become as complicated as desired. After giving the general technical and notational machinery in §1, and giving the particulars of our needs in §2, in §3 we prove that the set ℋ described above could be made to be precisely of degree ofA. We then go on and establish various results (both existential and universal) on the mentioned partitioning of ⊿. One of the surprising results is that there are r.e. open sets such that every element of partitioning of ⊿ is of a different degree. Since the exact wording of the results uses the technical definitions of these partitioning elements, we do not summarize the results here and ask the reader to examine §3 after browsing through §§1 and 2.


2021 ◽  
Vol 6 (11) ◽  
pp. 12471-12490
Author(s):  
Baravan A. Asaad ◽  
◽  
Tareq M. Al-shami ◽  
Abdelwaheb Mhemdi ◽  
◽  
...  

<abstract><p>To contribute to soft topology, we originate the notion of soft bioperators $ \tilde{\gamma} $ and $ {\tilde{\gamma}}^{'} $. Then, we apply them to analyze soft $ (\tilde{\gamma}, {\tilde{\gamma}}^{'}) $-open sets and study main properties. We also prove that every soft $ (\tilde{\gamma}, {\tilde{\gamma}}^{'}) $-open set is soft open; however, the converse is true only when the soft topological space is soft $ (\tilde{\gamma}, {\tilde{\gamma}}^{'}) $-regular. After that, we define and study two classes of soft closures namely $ Cl_{(\tilde{\gamma}, {\tilde{\gamma}}^{'})} $ and $ \tilde{\tau}_{(\tilde{\gamma}, {\tilde{\gamma}}^{'})} $-$ Cl $ operators, and two classes of soft interior namely $ Int_{(\tilde{\gamma}, {\tilde{\gamma}}^{'})} $ and $ \tilde{\tau}_{(\tilde{\gamma}, {\tilde{\gamma}}^{'})} $-$ Int $ operators. Moreover, we introduce the notions of soft $ (\tilde{\gamma}, {\tilde{\gamma}}^{'}) $-$ g $.closed sets and soft $ (\tilde{\gamma}, {\tilde{\gamma}}^{'}) $-$ T_{\frac{1}{2}} $ spaces, and explore their fundamental properties. In general, we explain the relationships between these notions, and give some counterexamples.</p></abstract>


2019 ◽  
Vol 38 (6) ◽  
pp. 25-32
Author(s):  
Ajoy Mukharjee

In this paper,  we introduce and study the notion of $\mu$-precompact spaces on the observation that  each $\mu$-preopen set of a generalized topological space is contained  in a $\mu$-open set. The $\mu$-precompactness is weaker than $\mu$-compactness but stronger than weakly $\mu$-compactness of  generalized topological spaces.


Sign in / Sign up

Export Citation Format

Share Document