Design and Evaluation of Acyclovir Niosomes

Author(s):  
A. Anka Rao ◽  
Swarupa Arvapalli ◽  
G. S. N. Koteswara Rao ◽  
Narender. Malothu ◽  
Naga Raju. Bandaru

The current study aims to formulate and evaluate acyclovir loaded niosomes for sustained release of acyclovir. Stable Acyclovir loaded Niosomes can be prepared by hand shaking method and ether injection method with Span 80 and cholesterol in the ratio of 1:1, 2:1, and 3:1. Preformulation studies and drug excipients compatibility studies was done initially and results directed the further course of formulation. Most of the vesicles are spherical in shape, the size range of the vesicles, fall in the narrow size range of 0.5-5 and 0.5-2.5 by hand shaking method and ether injection method respectively. A high % of Acyclovir can be encapsulated in the vesicles (75-84%) prepared by hand shaking method. Concentration of non-ionic surfactant such as Span 80 might influences the drug release pattern of all formulation. In vitro release of Acyclovir from niosomes was very slow when compared to the release from pure Acyclovir solution. Drug release studies showed that the niosomal preparation was stable at refrigeration temperature (40C). The vesicles prepared by hand shaking method were found to be larger in size as compared to vesicles prepared by ether injection method. Almost constant drug release was observed in all formulations indicating zero order release pattern.

Author(s):  
A Rajasekaran ◽  
V Sivakumar ◽  
K Karthika ◽  
J Padma Preetha ◽  
T Abirami

The main aim of this study is to develop ocular drug delivery system for Natamycin; a polyeneantibiotic is highly useful for the treatment of conjunctivitis and keratitis. The ocuserts were preparedusing different polymers such as eudragit L-100, eudragit S-100, eudragit RL-100, hydroxy propylmethyl cellulose phthalate and cellulose acetate phthalate at various proportion and combinationsusing PEG-400 as plasticizer. The prepared ocuserts were evaluated for their physicochemicalparameters like drug content, weight uniformity, folding endurance, thickness, % moistureabsorption and water vapour transmission rate. The in vitro drug release from the formulations wasstudied using commercial semi permeable membrane and the in vitro release kinetic datas weretreated according to the diffusion models proposed by Higuchi and Peppas in order to access themechanism of drug release from the formulations, which were following zero order kinetics. All theformulations showed no change in the physical appearance and the FTIR studies indicated nopossibility of interaction between drug and polymer. The expected zero order release for one day wasobserved in the formulation D1 (3% Eudragit RL100 and 1% Eudragit L100)Keywords: Ocular Insert; Ocular Delivery; NatamycinDOI: 10.3126/kuset.v6i1.3318 Kathmandu University Journal of Science, Engineering and Technology Vol.6(1) 2010, pp108-115


Author(s):  
Sakthikumar T ◽  
Rajendran N N ◽  
Natarajan R

The present study was aimed to develop an extended release tablet of metoprolol Succinate for the treatment of hypertension.  Four extended release formulations F1-F4 were developed using varying proportions of hydroxylpropyl-methylcellulose K100M, sodium carboxy methyl cellulose and Eudragit L30 D55 by wet granulation. Five extended release formulations F5-F9 containing HPMC K100M and HPMC 5 cps in varying concentration were developed by direct compression. The physicochemical and in vitro release characteristics of all the formulations were investigated and compared. Two formulations, F7 and F8 have shown not more 25% drug release  in 1st h, 20%-40% drug release at 4th hour, 40%-60% drug release at 8th hour and not less than 80% at 20th hour and the release pattern conform with USP specification for 24 hours extended release formulation. It can be conclusively stated that optimum concentration of HPMC K100M (58%-65%) by direct compression method can yield an extended release of metoprolol succinate for 24 hours.


Author(s):  
Sahil Kumar ◽  
Bandna Sharma ◽  
Tilak R. Bhardwaj ◽  
Rajesh K. Singh

Aims: In the present study, polymer-drug conjugates were synthesized based on azo-bond cleavage drug delivery approach for targeting erlotinib as anticancer drug specifically to the colon for the proficient treatment of colon cancer. Background: Colon cancer (CC) is the third commonly detected tumor worldwide and it make up about 10 % of all cases of cancers. Most of the chemotherapeutic drugs available for treating colon cancer are not only toxic to cancerous cells but also to the normal healthy cells. Among the various approaches to get rid of the adverse effects of anticancer agents, prodrugs are one of the most imperative approaches. Objective: The objective of the study is to chemically modify the erlotinib drug through azo-bond linkage and suitable spacer which will be finally linked to polymeric backbone to give desired polymer linked prodrug. The azo reductase enzyme present in colon is supposed to cleave the azo-bond specifically and augment the drug release at the colon. Methods: The synthesized conjugates were characterized by IR and 1H-NMR spectroscopy. The cleavage of aromatic azobond resulted in a potential colon-specific liberation of drug from conjugate studied in rat fecal contents. In vitro release profiles of polyphosphazene-linked conjugates of erlotinib have been studied at pH 1.2, pH 6.8 and pH 7.4. The stability study was designed to exhibit that free drug was released proficiently and unmodified from polyphosphazene-erlotinib conjugates having aromatic azo-bond in artificial colon conditions. Results: The synthesized conjugates were demonstrated to be stable in simulated upper gastro-intestinal tract conditions. The drug release kinetics shows that all the polymer-drug conjugates of erlotinib follow zero-order release kinetics which indicates that the drug release from the polymeric backbone is independent of its concentration. Kinetic study of conjugates with slope (n) shows the anomalous type of release with an exponent (n) > 0.89 indicating a super case II type of release. Conclusion: These studies indicate that polyphosphazene linked drug conjugates of erlotinib could be the promising candidates for the site-specific treatment of colon cancer with least detrimental side-effects.


2020 ◽  
Vol 10 (5) ◽  
pp. 649-663
Author(s):  
Reena Siwach ◽  
Parijat Pandey ◽  
Harish Dureja

Background: The rate-limiting step in the oral absorption of BCS class II drugs is dissolution. Their low solubility is one of the major obstacles in the process of drug development. Dissolution rate can be increased by decreasing the particle size to the nano range, eventually leading to increased bioavailability. Objective: : In the present study, glimepiride loaded nanoparticles were prepared to enhance the dissolution rate. The aim of the work was to examine the effect of polymer-drug ratio, solvent-antisolvent ratio and speed of mixing on in vitro release of glimepiride. Methods: Glimepiride is an antidiabetic drug belonging to the BCS class II drugs. The polymeric nanoparticles were formulated according to Box-Behnken Design (BBD) using nanoprecipitation technique. The prepared nanoparticles were evaluated for in vitro drug release, loading capacity, entrapment efficiency, and percentage yield. Result: It was found that NP-8 has maximum in vitro drug release and was selected as an optimized batch. Analysis of Variance (ANOVA) was applied to the in vitro drug release to study the fitness and significance of the model. The batch NP-8 showed 70.34 ± 1.09% in vitro drug release in 0.1 N methanolic HCl and 92.02 ± 1.87% drug release in phosphate buffer pH 7.8. The release data revealed that the nanoparticles followed zero order kinetics. Conclusion: The study revealed that the incorporation of glimepiride into gelucire 50/13 resulted in enhanced dissolution rate.


2020 ◽  
pp. 1-9
Author(s):  
Yunhong Wang ◽  
Rong Hu ◽  
Yanlei Guo ◽  
Weihan Qin ◽  
Xiaomei Zhang ◽  
...  

OBJECTIVE: In this study we explore the method to prepare tanshinone self-microemulsifying sustained-release microcapsules using tanshinone self-microemulsion as the core material, and chitosan and alginate as capsule materials. METHODS: The optimal preparation technology of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules was determined by using the orthogonal design experiment and single-factor analysis. The drug loading and entrapment rate were used as evaluation indexes to assess the quality of the drug, and the in vitro release rate was used to evaluate the drug release performance. RESULTS: The best technology of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules is as follows: the concentration of alginate is 1.5%, the ratio of tanshinone self-microemulsion volume to alginate volume to chitosan mass is 1:1:0.5 (ml: ml: g), and the best concentration of calcium chloride is 2.0%. To prepare the microcapsules using this technology, the drug loading will be 0.046%, the entrapment rate will be 80.23%, and the 24-hour in vitro cumulative release rate will be 97.4%. CONCLUSION: The release of the microcapsules conforms to the Higuchi equation and the first-order drug release model and has a good sustained-release performance.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2180
Author(s):  
Sana Javaid ◽  
Nasir M. Ahmad ◽  
Azhar Mahmood ◽  
Habib Nasir ◽  
Mudassir Iqbal ◽  
...  

The objective of the present study was to achieve the successful encapsulation of a therapeutic agent to achieve antifouling functionality regarding biomedical applications. Considering nanotechnology, drug-loaded polycaprolactone (PCL)-based nanoparticles were prepared using a nano-precipitation technique by optimizing various process parameters. The resultant nano-formulations were investigated for in vitro drug release and antifouling applications. The prepared particles were characterized in terms of surface morphology and surface properties. Optimized blank and drug-loaded nanoparticles had an average size of 200 nm and 216 nm, respectively, with associated charges of −16.8 mV and −11.2 mV. Studies of the in vitro release of drug were carried out, which showed sustained release at two different pH, 5.5 and 7.4 Antifouling activity was observed against two bacterial strains, Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The zone of inhibition of the optimized polymeric drug-loaded nanoparticle F-25 against both strains were compared with the pure drug. The gradual pH-responsive release of antibiotics from the biodegradable polymeric nanoparticles could significantly increase the efficiency and pharmacokinetics of the drug as compared to the pure drug. The acquired data significantly noted that the resultant nano-encapsulation of antifouling functionality could be a promising candidate for topical drug delivery systems and skin applications.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 260
Author(s):  
Mariana Morais ◽  
Patrícia Coimbra ◽  
Maria Eugénia Pina

The visual impairment that often leads to blindness causes a higher morbidity rate. The goal of this work is to create a novel biodegradable polymeric implant obtained from coaxial fibers containing the dispersed drug—acetazolamide—in order to achieve sustained drug release and increase patient compliance, which is of the highest importance. Firstly, during this work, uncoated implants were produced by electrospinning, and rolled in the shape of small cylinders that were composed of uniaxial and coaxial fibers with immobilized drug inside. The fibers were composed by PCL (poly ε-caprolactone) and Lutrol F127 (poly (oxyethylene-b-oxypropylene-b-oxyethylene)). The prepared implants exhibited a fast rate of drug release, which led to the preparation of new implants incorporating the same formulation but with an additional coating film prepared by solvent casting and comprising PCL and Lutrol F127 or PCL and Luwax EVA 3 ((poly (ethylene-co-vinyl acetate)). Implants were characterized and in vitro release profiles of acetazolamide were obtained in phosphate buffered saline (PBS) at 37 °C. The release profile of the acetazolamide from coated implant containing Luwax EVA 3 is considerably slower than what was observed in case of coated implants containing Lutrol F127, allowing a sustained release and an innovation relatively to other ocular drug delivery systems.


Author(s):  
Nani Tadhi ◽  
Himansu Chopra ◽  
Gyanendra Kumar Sharma

Transdermal patch is a drug delivery device in which the drugs are incorporated and is design in such a way that it releases the drug in sustained and at predetermined rate to deliver the drug through the skin to the systemic circulation painlessly. The aim of this research study was to formulate a controlled and sustained release transdermal matrix type patch of Methimazole. The matrix patch was prepared by solvent casting method using a various polymer in different concentration, HPMC (hydrophilic), Eudragit RL100 and Ethyl cellulose (hydrophobic) polymer. Total 9 prototype formulation were prepared and it was subjected for various evaluation test; weight uniformity, Folding endurance, thickness, Drug content, percent moisture content, percent Moisture uptake and In-vitro drug release study using Franz diffusion cell. The in-vitro CDR% data was fit into kinetics model to see the release kinetics from the patches. The Formulation F5 was choosen as a best formulation according to in-vitro drug release study. The in-vitro release was found 81.12 % in 12 hours, it followed zero order kinetics. The nature of polymer and concentration ratio of polymers plays a crucial role for obtaining a good transdermal patch design; therefore optimisation is very important step to formulate a desired TDDS. Therefore the result of the study encourages a further study and is hopeful that the present study would contribute to the recent pharmaceutical research for formulation development.


Author(s):  
Prasanta Kumar Mohapatra ◽  
Boddu Pavan Kumar ◽  
Pankaj Singh Patel ◽  
Harish Chandra Verma ◽  
Satyajit Sahoo

Mucoadhesive buccal films of rivastigmine were prepared by the solvent casting technique using HPMC K15M, sodium alginate, glycerine, and Eudragit RL100. Arranged films assessed for weight variation, thickness, % drug substance, % moisture loss, % moisture take-up, folding endurance, in-vitro medicament release, and Fourier transform Infrared spectroscopy (FTIR). The films showed a controlled release (CR) over 8 h. The preparation observed to be a worthy candidate for the development of buccal patches for therapeutic purposes. Drug-polymer compatibility considers FTIR demonstrated no contradiction between the medicament and the polymers. The optimized formulation found F7 indicated drug release 85% at the end of 8 h. Thinking about the correlation coefficient (R2) values got from the kinetic equations, the drug release from the formulations F1-F8 has discovered zero-order release mechanism. It can be concluded that oral buccal patches of rivastigmine, for treatment of Alzheimer’s and Parkinson’s disease, can be formulated. The study suggests that rivastigmine can be conveniently administered orally in the form of buccal patches, with the lesser occurrence of its side effects and improved bioavailability.


Sign in / Sign up

Export Citation Format

Share Document