scholarly journals Synthesis of Hematite Nano Material and Its Effect on Properties of Water Based Drilling Mud

2021 ◽  
Vol 11 (4) ◽  
pp. 17-35
Author(s):  
Narjis Mohmmad Ahmed ◽  
Dr. Hassan Abdul Hadi Abdul Hussein ◽  
Mustafa H. Flayyih

The worldwide use of nanotechnology in most industries, such as in oil and gas industries, the world now has been directed towards introducing this modern technology in drilling fluids for the purpose of reaching and extracting hydrocarbons that exist at high depth where high temperatures and high pressure present using this technology to achieve the required mud properties with lowest cost. In this research, the particles of Nano hematite were prepared in laboratory using two methods, the first method by chemical reaction between iron nitrate (Fe (NO3)3• 9H2O) and ammonium hydroxide (NH4OH), after that, prepared Nano-materials were subjected to AFM, XRD testing in order to investigate the size and type of particles, the investigations showed that the formed particles were Fe2O3 (<100nm). The second method is similar to the first method except adding (CTAB) material in order to reduce the interfacial tension leading to 4.5nm Nano-material. Three samples of drilling mud were prepared, the first sample was prepared from water and bentonite only, the second sample was prepared from water, bentonite and nano (prepared from first method), the third samples was prepared from water, bentonite and nano (prepared from second method), rheological properties, filtration, density, lubricity, sagging and magnetism properties were measured by analyzing and comparing the results. The results were obtained showed that the small effect of nano material filtration, density, lubricity, and sagging properties, except the viscosity increase when the second sample of Nano hematite was added to the mud prepared from water and bentonite. Also, the magnetism increase when the second sample of nano hematite was added to the mud prepared from water and bentonite, due to the difference in the molecular arrangement caused by the presence of CTAB.

Author(s):  
Bunyami Shafie ◽  
Lee Huei Hong ◽  
Phene Neoh Pei Nee ◽  
Fatin Hana Naning ◽  
Tze Jin Wong ◽  
...  

Drilling mud is a dense, viscous fluid mixture used in oil and gas drilling operations to bring rock cuttings to the earth's surface from the boreholes as well as to lubricate and cool the drill bit. Water-based mud is commonly used due to its relatively inexpensive and easy to dispose of. However, several components and additives in the muds become increasingly cautious and restricted. Starch was introduced as a safe and biodegradable additive into the water-based drilling fluid, in line with an environmental health concern. In this study, the suitability of four local rice flours and their heat moistures derivatives to be incorporated in the formulation of water-based drilling fluid was investigated. They were selected due to their natural amylose contents (waxy, low, intermediate, and high). They were also heat moisture treated to increase their amylose contents. Results showed that the addition of the rice flours into water-based mud significantly reduced the density, viscosity, and filtrate volume. However, the gel strength of the mud was increased. The rice flours, either native or heat moisture treated, could serve as additives to provide a variety of low cost and environmentally friendly drilling fluids to be incorporated and fitted into different drilling activity.


Author(s):  
Winarto S. ◽  
Sugiatmo Kasmungin

<em>In the process of drilling for oil and gas wells the use of appropriate drilling mud can reduce the negative impacts during ongoing drilling and post-drilling operations (production). In general, one of the drilling muds that are often used is conventional mud type with weighting agent barite, but the use of this type of mud often results in skin that is difficult to clean. Therefore in this laboratory research an experiment was carried out using a CaCO3 weigting agent called Mud DS-01. CaCO3 is widely used as a material for Lost Circulation Material so that it is expected that using CaCO3 mud will have little effect on formation damage or at least easily cleaned by acidizing. The aim of this research is to obtain a formula of mud with CaCO3 which at least gives formation damage. Laboratory experiments on this drilling mud using several mud samples adjusted to the property specifications of the mud program. Mud sample consists of 4, namely using super fine, fine, medium, and conventional CaCO3. First measuring mud properties in each sample then testing the filter cake breaker, testing the initial flow rate using 200 ml of distilled water and a 20 micron filter disk inserted in a 500 ml HPHT cell then assembled in a PPA jacket and injecting a pressure of 100 psi. The acidification test was then performed using 15% HCL and then pressured 100 psi for 3 hours to let the acid work to remove the cake attached to the filter disk (acidizing). Laboratory studies are expected which of these samples will minimize the formation damage caused by drilling fluids.</em>


Fluids ◽  
2021 ◽  
Vol 6 (9) ◽  
pp. 327
Author(s):  
Ekaterina Leusheva ◽  
Nataliia Brovkina ◽  
Valentin Morenov

Drilling fluids play an important role in the construction of oil and gas wells. Furthermore, drilling of oil and gas wells at offshore fields is an even more complex task that requires application of specialized drilling muds, which are non-Newtonian and complex fluids. With regard to fluid properties, it is necessary to manage the equivalent circulation density because its high values can lead to fracture in the formation, loss of circulation and wellbore instability. Thus, rheology of the used drilling mud has a significant impact on the equivalent circulation density. The aim of the present research is to develop compositions of drilling muds with a low solids load based on salts of formate acid and improve their rheological parameters for wells with a narrow drilling fluid density range. Partially hydrolyzed polyacrylamide of different molecular weights was proposed as a replacement for hydrolized polyacrylamide. The experiment was conducted on a Fann rotary viscometer. The article presents experimentally obtained data of indicators such as plastic viscosity, yield point, nonlinearity index and consistency coefficient. Experimental data were analyzed by the method of approximation. Analysis is performed in order to determine the most suitable rheological model, which describes the investigated fluids’ flow with the least error.


2021 ◽  
Vol 6 (7) ◽  
pp. 33-37
Author(s):  
A. D. I. Sulaiman ◽  
M. B. Adamu ◽  
Usman Hassan ◽  
S. M. Aliyu

Progress in drilling engineering demands more sophistication from the drilling mud in order to enhance the usage of drilling fluids, hence numerous additives were introduced, and a simple fluid became a complicated mixture of liquid, solid and chemicals. Some of the challenges with the existing drilling fluid additives has to do with compatibility, degradability, safety, cost, and environmental friendliness. Studies have been carried out on the economic benefits of Cissus Populnea which includes in areas of food, medicine, shelter, and transport but much attention has been paid to its applications in the Oil and Gas industry. This study investigates the rheological properties of Cissus Populnea for application as drilling fluid additive (viscosifier) in Water Based Drilling Mud. Fresh roots, stems and leaves of cissus populnea were sourced from Bayara, Bauchi State. Some liquid exudates of cissus populnea were collected and stored for analysis while some of the samples were dried and grinded in to powdered form. Exudate of the samples were characterized by FTIR, XRD and XRF. Drilling mud was formulated with the samples cisssus populnea and bentonite at different temperatures. The rheology of the formulated drilling mud was investigated and compared with that formulated using bentonite and carboxymethyl cellulose (CMC). Results from X-ray Fluorescence analysis show that the chemical composition of Cissus populnea stem and root are similar when comparing their major components (In2O3 and CaO), while that of leaf has its major components to be In2O3 and Cl. Therefore, in this research work, experiments were conducted with only stem and leaf since stem and roots have common features. From the results of FTIR spectra, the stem of cissus populnea has an OH peak wavelength of 3487.42 cm-1 while that of leave is 3340.82 cm-1. The diffractogram of the stem of cissus populnea was observed at 2q = 22.67o which is very close to that of CMC (2θ = 20.31o) while the intense peaks of leaf were observed at around 28.65o. Viscosity of cissus populnea was investigated and found to be decreasing with the increase in temperature for stem exudate. While for leaf exudate, the viscosity was rather increasing with the increase in temperature at temperatures below 35 oC and then continue to decrease with the increase in temperature. The outcome of this research has confirmed the applicability of cissus populnea for drilling fluid additives, viscosifier.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4457
Author(s):  
Valentin Morenov ◽  
Ekaterina Leusheva ◽  
Tianle Liu

Construction of oil and gas wells at offshore fields often involves high formation pressure and the presence of swellable clay rocks in the section. In addition, productivity preservation is also an important aspect. For this purpose, it is necessary to reduce the solids content of the drilling mud. The purpose of this work is to develop, improve, and study compositions of weighted drilling muds with low content of solids, on the basis of organic salts of alkali metals and polymers for the construction of wells prone to rock swelling and/or cavings, as well as drilling fluids for drilling-in the formation. In order to achieve the set goal the following is required: Analysis of existing drilling muds of higher density for drilling wells in unstable rock intervals and for drilling in the productive formation; analysis of experience in using drilling systems on the formic acid salts base and substantiation of requirements for flushing fluids during well construction; development and investigation of drilling mud compositions on the formate base; and the evaluation of inhibiting effect of systems containing organic salts, polymer reagents, and calcium carbonate on clay samples. The developed drilling mud is characterized by a high inhibiting ability that allows minimized mud-weighting by the natural solid phase. This reduces the volume of prepared mud and facilitates the regulation of its properties by reducing the dispersion of drilled cuttings; it eliminates problems related to hydration and the swelling of active clay rocks; and stabilizes unstable argillites prone to caving. The low solids content, low filtration rates, and inhibitory nature of the mud allows high stability of the rheological properties of the mud, and preserves oil and gas reservoir productivity under conditions of elevated formation pressure.


Author(s):  
Catalin Teodoriu ◽  
Gioia Falcone ◽  
Amodu Afolabi

Gas hydrates are ice-like crystalline systems made of water and methane that are stable under high pressure and low temperature conditions. Gas hydrates have been identified as strategic resources and may surpass all known oil and gas reserves combined. However, these resources will become reserves only if the gas contained therein can be produced economically. In the oil and gas industry, gas hydrates may be encountered while drilling sediments of the subsea continental slopes and in the subsurface of permafrost regions. They also represent a flow assurance issue, as they may form in the well and in the flowlines, causing blockages. Deepwater drilling programmes have experienced problems when encountering gas hydrate formations. A major issue is that of phase transition, where gas hydrate goes from a solid state to dissociated gas and water, as there are rapid changes in fluid volumes and pressure. This can cause drilling equipment failure, borehole instability and formation collapse. After dissociation of water and gas, hydrates may be prevented from forming in the well by using appropriate inhibitors in the drilling mud. There is a need to develop fluids specifically for drilling through gas hydrate formations, either to unlock the unconventional reserves trapped in the crystalline gas hydrate structures or to safely reach underlying conventional reserves. To drill wells in a gas hydrate formation, a conductor casing is needed to allow close loop circulation of the mud, if different from seawater. The search for the ideal mud for drilling through gas hydrate formations must start with a review of past experiences worldwide and of the lessons learned. This paper presents a review of the problems encountered while drilling through gas hydrate formations. It identifies the key requirements for drilling fluids, based on the interaction between the drill bit, the drilling fluid and the formation. An evaluation of the environmental risk associated with drilling through gas hydrate formations is also presented.


2019 ◽  
Vol 38 (2) ◽  
pp. 569-588 ◽  
Author(s):  
Lei Zhang ◽  
Xiaoming Wu ◽  
Yujie Sun ◽  
Jihua Cai ◽  
Shuaifeng Lyu

The hydration and swelling of shale is a persistent challenge in the drilling of oil and gas wells. Many methods of reducing shale hydration and swelling have been developed; however, most of them are high-cost or release pollutants. In this study, we explored the use of pomelo peel powder as a novel additive to water-based drilling fluids for inhibiting shale hydration swelling in an environmentally sustainable manner. We compared the performance of the drilling fluid containing pomelo peel powder to that of traditional shale inhibitors, such as potassium chloride and polyamine. Moreover, hydration inhibition, bentonite precipitation dynamic linear expansion, rolling recovery, and adsorption experiments were conducted to investigate the inhibitory effects of the pomelo peel powder on shale. The results show that the pomelo peel powder solution with a mass fraction of 1% and an optimised particle size of over 160 mesh was acidic, could prevent shale collapse, and could reduce mud loss by filtration. The rolling recovery of shale cuttings reached 95% with the addition of pomelo peel powder, and the powder could also inhibit the hydration of bentonite, prevent clay minerals from dispersing in a solution, and reduce the expansion of bentonite. The inhibitory effect of the powder was slightly worse than that of potassium chloride and polyamine; however, the difference was not significant. The anti-swelling mechanism of pomelo peel powder was then analysed, and we found that fresh pomelo peel powder contains a high number of active substances that reduce the filtration of mud, improve its rheological properties, and hinder the hydration and expansion of clay. Pomelo peel is available worldwide and is easy to obtain as a shale inhibitor. Thus, using pomelo peel powder can effectively alleviate ecological pressure and reduce environmental pollution.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Xiaowei Wang ◽  
Feng Liang ◽  
Degang Zhao ◽  
Zongshun Liu ◽  
Jianjun Zhu ◽  
...  

Abstract Three InGaN/GaN MQWs samples with varying GaN cap layer thickness were grown by metalorganic chemical vapor deposition (MOCVD) to investigate the optical properties. We found that a thicker cap layer is more effective in preventing the evaporation of the In composition in the InGaN quantum well layer. Furthermore, the quantum-confined Stark effect (QCSE) is enhanced with increasing the thickness of GaN cap layer. In addition, compared with the electroluminescence measurement results, we focus on the difference of localization states and defects in three samples induced by various cap thickness to explain the anomalies in room temperature photoluminescence measurements. We found that too thin GaN cap layer will exacerbates the inhomogeneity of localization states in InGaN QW layer, and too thick GaN cap layer will generate more defects in GaN cap layer.


2021 ◽  
Vol 881 ◽  
pp. 33-37
Author(s):  
Wei Na Di

The application of nanomaterials in oil and gas fields development has solved many problems and pushed forward the development of petroleum engineering technology. Nanomaterials have also been used in wellbore fluids. Nanomaterials with special properties can play an important role in improving the strength and flexibility of mud cake, reducing friction between the drill string and wellbore and maintaining wellbore stability. Adding nanomaterials into the cement slurry can eliminate gas channeling through excellent zonal isolation and improve the cementing strength of cement stone, thereby facilitating the protection and discovery of reservoirs and enhancing the oil and gas recovery. This paper tracks the application progress of nanomaterials in wellbore fluids in oil and gas fields in recent years, including drilling fluids, cement slurries. Through the tracking and analysis of this paper, it is concluded that the applications of nanomaterials in wellbore fluids in oil and gas fields show a huge potential and can improve the performance of wellbore fluids.


2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
David Ekuma ◽  
Ikechukwu Okafor ◽  
Innocent Nweze

Abstract Drilling fluid are complex fluids consisting of several additives. These additives are added to enhance and control the rheological properties (such as viscosity, gel strength and yield point) of the mud. These properties are controlled for effective drilling of a well. This research work is focused on determining the rheological behavior of drilling mud using industry-based polymer and Irvingia Gabonensis (ogbono) as viscosifiers. Water based muds were formulated from the aforementioned locally sourced viscosifier and that of the conventional used viscosifier (Carboxylmetyl cellulose, CMC). Laboratory tests were carried out on the different muds formulated and their rheological properties (such as yield stress, shear stress, plastic viscosity and shear rate) are evaluated. The concentration of the viscosifiers were varied. The expected outcome of the research work aims at lowering the total drilling cost by reducing the importation of foreign polymer which promotes the development of local content in the oil and gas industry. The research compares the rheology of mud samples and the effect of varying the concentration (2g, 4g, 6g, 8g, and 10g) of both CMC and Ogbono and determining the changes in their rheological properties. The total volume of each mud sample is equivalent to 350ml which represent one barrel (42gal) in the lab. From the result, at concentration of 2g, the ogbono mud has a better rheology than the CMC mud, but at a concentration above 2g, CMC mud shows a better rheology than ogbono mud, that is, as the concentration of CMC is increased, the rheological properties of the mud increased while as the concentration of ogbono is increased the rheological properties decreased. The viscosity of the drilling fluid produced from the ogbono were lower than that of CMC, it could be used together with another local product such as cassava starch, offor or to further improve the rheology and then be a substitute to the conventional viscosifiers.


Sign in / Sign up

Export Citation Format

Share Document