scholarly journals Protein Receptors On Chondrocytes

2021 ◽  
Vol 2 (2) ◽  
pp. 1-10
Author(s):  
Gordon Slater ◽  
Samar Javadian
Keyword(s):  
Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 6055
Author(s):  
Roger R. C. New ◽  
Tam T. T. Bui ◽  
Michal Bogus

Peptide aptamers are short amino acid chains that are capable of binding specifically to ligands in the same way as their much larger counterparts, antibodies. Ligands of therapeutic interest that can be targeted are other peptide chains or loops located on the surface of protein receptors (e.g., GCPR), which take part in cell-to-cell communications either directly or via the intermediary of hormones or signalling molecules. To confer on aptamers the same sort of conformational rigidity that characterises an antibody binding site, aptamers are often constructed in the form of cyclic peptides, on the assumption that this will encourage stronger binding interactions than would occur if the aptamers were simply linear chains. However, no formal studies have been conducted to confirm the hypothesis that linear peptides will engage in stronger binding interactions with cyclic peptides than with other linear peptides. In this study, the interaction of a model cyclic decamer with a series of linear peptide constructs was compared with that of a linear peptide with the same sequence, showing that the cyclic configuration does confer benefits by increasing the strength of binding.


2014 ◽  
Vol 247 (11) ◽  
pp. 1149-1159 ◽  
Author(s):  
Massimo D’Agostino ◽  
Arianna Crespi ◽  
Elena Polishchuk ◽  
Serena Generoso ◽  
Gianluca Martire ◽  
...  

1999 ◽  
Vol 19 (1-4) ◽  
pp. 533-545 ◽  
Author(s):  
Ruud Hovius ◽  
Evelyne L. Schmid ◽  
Ana-Paula Tairi ◽  
Horst Blasey ◽  
Alain R. Bernard ◽  
...  

2012 ◽  
Vol 25 (4) ◽  
pp. 405-410 ◽  
Author(s):  
Edward J. Bertaccini ◽  
James R. Trudell

2013 ◽  
Vol 203 (5) ◽  
pp. 801-814 ◽  
Author(s):  
Songyu Wang ◽  
Fabian B. Romano ◽  
Christine M. Field ◽  
Tim J. Mitchison ◽  
Tom A. Rapoport

In metazoans the endoplasmic reticulum (ER) changes during the cell cycle, with the nuclear envelope (NE) disassembling and reassembling during mitosis and the peripheral ER undergoing extensive remodeling. Here we address how ER morphology is generated during the cell cycle using crude and fractionated Xenopus laevis egg extracts. We show that in interphase the ER is concentrated at the microtubule (MT)-organizing center by dynein and is spread by outward extension of ER tubules through their association with plus ends of growing MTs. Fusion of membranes into an ER network is dependent on the guanosine triphosphatase atlastin (ATL). NE assembly requires fusion by both ATL and ER-soluble N-ethyl-maleimide–sensitive factor adaptor protein receptors. In mitotic extracts, the ER converts into a network of sheets connected by ER tubules and loses most of its interactions with MTs. Together, these results indicate that fusion of ER membranes by ATL and interaction of ER with growing MT ends and dynein cooperate to generate distinct ER morphologies during the cell cycle.


2008 ◽  
Vol 19 (6) ◽  
pp. 2500-2508 ◽  
Author(s):  
Vincent J. Starai ◽  
Christopher M. Hickey ◽  
William Wickner

The fusion of yeast vacuoles, like other organelles, requires a Rab-family guanosine triphosphatase (Ypt7p), a Rab effector and Sec1/Munc18 (SM) complex termed HOPS (homotypic fusion and vacuole protein sorting), and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). The central 0-layer of the four bundled vacuolar SNAREs requires the wild-type three glutaminyl (Q) and one arginyl (R) residues for optimal fusion. Alterations of this layer dramatically increase the Km value for SNAREs to assemble trans-SNARE complexes and to fuse. We now find that added purified HOPS complex strongly suppresses the fusion of vacuoles bearing 0-layer alterations, but it has little effect on the fusion of vacuoles with wild-type SNAREs. HOPS proofreads at two levels, inhibiting the formation of trans-SNARE complexes with altered 0-layers and suppressing the ability of these mismatched 0-layer trans-SNARE complexes to support membrane fusion. HOPS proofreading also extends to other parts of the SNARE complex, because it suppresses the fusion of trans-SNARE complexes formed without the N-terminal Phox homology domain of Vam7p (Qc). Unlike some other SM proteins, HOPS proofreading does not require the Vam3p (Qa) N-terminal domain. HOPS thus proofreads SNARE domain and N-terminal domain structures and regulates the fusion capacity of trans-SNARE complexes, only allowing full function for wild-type SNARE configurations. This is the most direct evidence to date that HOPS is directly involved in the fusion event.


2015 ◽  
Vol 26 (2) ◽  
pp. 305-315 ◽  
Author(s):  
Amy Orr ◽  
William Wickner ◽  
Scott F. Rusin ◽  
Arminja N. Kettenbach ◽  
Michael Zick

Fusion of yeast vacuoles requires the Rab GTPase Ypt7p, four SNAREs (soluble N-ethylmaleimide–sensitive factor attachment protein receptors), the SNARE disassembly chaperones Sec17p/Sec18p, vacuolar lipids, and the Rab-effector complex HOPS (homotypic fusion and vacuole protein sorting). Two HOPS subunits have direct affinity for Ypt7p. Although vacuolar fusion has been reconstituted with purified components, the functional relationships between individual lipids and Ypt7p:GTP have remained unclear. We now report that acidic lipids function with Ypt7p as coreceptors for HOPS, supporting membrane tethering and fusion. After phosphorylation by the vacuolar kinase Yck3p, phospho-HOPS needs both Ypt7p:GTP and acidic lipids to support fusion.


Author(s):  
Parastou Farshi ◽  
Eda Ceren Kaya ◽  
Fataneh Hashempour-Baltork ◽  
Kianoush Khosravi-Darani

: Coronaviruses have caused worldwide outbreaks in different periods. SARS (severe acute respiratory syndrome), was the first emerged virus from this family, followed by MERS (Middle East respiratory syndrome) and SARS-CoV-2 (2019-nCoV or COVID 19), which is newly emerged. Many studies have been conducted on the application of chemical and natural drugs for treating these coronaviruses and they are mostly focused on inhibiting the proteases of viruses or blocking their protein receptors through binding to amino acid residues. Among many substances which are introduced to have an inhibitory effect against coronaviruses through the mentioned pathways, natural components are of specific interest. Secondary and primary metabolites from plants, are considered as potential drugs to have an inhibitory effect on coronaviruses. IC50 value (the concentration in which there is 50% loss in enzyme activity), molecular docking score and binding energy are parameters to understand the ability of metabolites to inhibit the specific virus. In this study we did a review of 154 papers on the effect of plant metabolites on different coronaviruses and data of their IC50 values, molecular docking scores and inhibition percentages are collected in tables. Secondary plant metabolites such as polyphenol, alkaloids, terpenoids, organosulfur compounds, saponins and saikosaponins, lectins, essential oil, and nicotianamine, and primary metabolites such as vitamins are included in this study.


Sign in / Sign up

Export Citation Format

Share Document