Hydraulic Performance Characteristics of a Submersible Axial-Flow Pump with Different Angles of Inlet Guide Vane

2018 ◽  
Vol 21 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Youn-Sung Kim ◽  
Hyeon-Seok Shim ◽  
Kwang-Yong Kim
Author(s):  
Youn-Sung Kim ◽  
Hyeon-Seok Shim ◽  
Kwang-Yong Kim

This study aims to evaluate effects of blade pitch and inlet guide vane (IGV) angle on the performance characteristics of a submersible axial-flow pump. According to the results of the previous study, the efficiency at the design and over-load conditions were significantly affected by the angle of IGV due to change in the incidence angle. To investigate the interactional effects of IGV and blade angle are analyzed using three-dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model. The hexahedral grids are used in the computational domain and a grid-dependency test is performed to obtain an optimal number of the grids. In this study, combinations of three different blade angles and two different IGV angles are tested. Adjusting angle of IGV increases the total pressure of the pump with a blade pitch increase, which can increase the efficiency of the pump in operating range.


Author(s):  
Sang-Won Kim ◽  
Youn-Jea Kim

An axial-flow pump has a relatively high discharge flow rate and specific speed at a relatively low head and it consists of an inlet guide vane, impeller, and outlet guide vane. The interaction of the flow through the inlet guide vane, impeller, and outlet guide vane of the axial-flow pump has a significant effect on its performance. Of those components, the guide vanes especially can improve the head and efficiency of the pump by transforming the kinetic energy of the rotating flow, which has a tangential velocity component, into pressure energy. Accordingly, the geometric configurations of the guide vanes such as blade thickness and angle are crucial design factors for determining the performance of the axial-flow pump. As the reliability of Computational Fluid Dynamics (CFD) has been elevated together with the advance in computer technology, numerical analysis using CFD has recently become an alternative to empirical experiment due to its high reliability to measure the flow field. Thus, in this study, 1,200mm axial-flow pump having an inlet guide vane and impeller with 4 blades and an outlet guide vane with 6 blades was numerically investigated. Numerical study was conducted using the commercial CFD code, ANSYS CFX ver. 16.1, in order to elucidate the effect of the thickness and angle of the guide vanes on the performance of 1,200mm axial-flow pump. The stage condition, which averages the fluxes between interfaces and is accordingly appropriate for the evaluation of pump performance, was adopted as the interface condition between the guide vanes and the impeller. The rotational periodicity condition was used in order to enable a simplified geometry to be used since the guide vanes feature multiple identical regions. The shear stress transport (SST) k-ω model, predicting the turbulence within the flow in good agreement, was also employed in the CFD calculation. With regard to the numerical simulation results, the characteristics of the pressure distribution were discussed in detail. The pump performance, which will determine how well an axial-flow pump will work in terms of its efficiency and head, was also discussed in detail, leading to the conclusion on the optimal blade thickness and angle for the improvement of the performance. In addition, the total pressure loss coefficient was considered in order to investigate the loss within the flow paths depending on the thickness and angle variations. The results presented in this study may give guidelines to the numerical analysis of the axial-flow pump and the investigation of the performance for further optimal design of the axial-flow pump.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Fan Yang ◽  
Hao-ru Zhao ◽  
Chao Liu

In order to investigate the influence of adjustable outlet guide vane on the hydraulic performance of axial-flow pump at part loads, the axial-flow pump with 7 different outlet guide vane adjustable angles was simulated based on the RNG k-ε turbulent model and Reynolds time-averaged equations. The Vector graphs of airfoil flow were analyzed in the different operating conditions for different adjustable angles of guide vane. BP-ANN prediction model was established about the effect of adjustable outlet guide vane on the hydraulic performance of axial-flow pump based on the numerical results. The effectiveness of prediction model was verified by theoretical analysis and numerical simulation. The results show that, with the adjustable angle of guide vane increasing along clockwise, the high efficiency area moves to the large flow rate direction; otherwise, that moves to the small flow rate direction. The internal flow field of guide vane is improved by adjusting angle, and the flow separation of tail and guide vane inlet ledge are decreased or eliminated, so that the hydraulic efficiency of pumping system will be improved. The prediction accuracy of BP-ANN model is 1%, which can meet the requirement of practical engineering.


Author(s):  
Youn-Sung Kim ◽  
Hyeon-Seok Shim ◽  
Kwang-Yong Kim

Abstract This paper presents a study of the effects of blade pitch angle and inlet guide vane (IGV) angle on the performance of a submersible axial-flow pump. To analyze the interaction effects between the IGVs and the rotor blades, both steady and unsteady three-dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model were solved. Hexahedral meshes were used in the computational domain and a grid-dependency test was performed to obtain an optimal number of grid nodes. The performance curves obtained by numerical simulation showed good agreement with experimental data. The results show that the fluctuation of hydraulic efficiency and head coefficient increased significantly under overload conditions as the IGV setting angle increased. Additionally, both the steady and unsteady performance characteristics were shown to be quite dependent on the combination of IGV angle and blade pitch angle, because the relative velocity at leading edge played an important role in the performance under overload conditions.


Author(s):  
Wei-Min Feng ◽  
Jing-Ye Pan ◽  
Zhi-Wei Guo ◽  
Qian Cheng

The effects of variable-inlet guide vanes on the performance of an axial flow pump considering tip clearance are investigated. The performance and the main flow field of the whole passage with five different angles of inlet guide vanes ( −10°, −5°, 0°, 5°, 10°) and with two tip clearance sizes (1‰ and 2‰) are presented. The results show that when the angle of inlet guide vane increases from negative values to positive values, the pump head reduces for two tip clearance sizes. This is mainly caused by the change of inlet velocity triangle of blade. Moreover, as tip clearance size increases from 1‰ to 2‰, both the pump head and efficiency decrease because of increasing of the strength of tip clearance leakage vortex and reverse flow.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Lei Xu ◽  
Dongtao Ji ◽  
Wei Shi ◽  
Bo Xu ◽  
Weigang Lu ◽  
...  

Axial flow pump has been widely used in hydraulic engineering, agriculture engineering, water supply and sewerage works, and shipbuilding industry. In order to improve the hydraulic performance of pump under off-design working conditions, the influence of the inlet segment axial chord and inlet angle adjustment of the guide vane on the pump segment efficiency and flow filed was simulated by using the renormalization group (RNG) k − ε turbulent model based on the Reynolds-averaged Navier–Stokes equations. The results indicate that the inlet segment axial chord and inlet angle adjustment of guide vane have a strong influence on the pump segment efficiency. Considering the support function and hydraulic loss of the guide vane, the inlet segment axial chord is set to 0.25 times the axial chord of guide vane. On the basis of the inlet angle of the guide vane under design conditions, when the inlet segment angle is turned counterclockwise, the pump segment efficiency is improved in the lower flow rate region; moreover, the pump segment efficiency is improved in the larger flow rate region when the inlet segment angle is turned clockwise. As the conditions deviate from the design working conditions, the influence of the guide vane inlet angle on the pump segment efficiency increases. If the inlet segment angle is properly adjusted under off-design working conditions, the flow pattern in the guide vane is improved and the hydraulic loss is decreased, because the inlet segment angle matches with the flow direction of impeller outlet; consequently, the pump segment efficiency is increased.


Author(s):  
Youn-Sung Kim ◽  
Hyeon-Seok Shim ◽  
Kwang-Yong Kim

This study investigates the effects of inlet guide vane (IGV) and blade pitch angles on the steady and unsteady performance of a submersible axial-flow pump. To analyze the interaction between the IGVs and the rotor blades, both steady and unsteady three-dimensional Reynolds-averaged Navier-Stokes equations were used with shear stress transport turbulence closure. Hexahedral meshes were used in the computational domain. The numerical results for performance curves showed good agreement with experimental data. The results showed that the steady and unsteady performance characteristics were dependent on both the IGV and blade pitch angles. Adjusting these angles affected the total pressure rise and thus caused variation in the efficiency in overload conditions. But adjusting these angles affected the unsteady pressure fluctuations in partial-load conditions. Detailed flow analyses were performed to find the root-cause of these phenomena.


2013 ◽  
Vol 52 (3) ◽  
pp. 032011
Author(s):  
W J Wang ◽  
Q H Liang ◽  
Y Wang ◽  
Y Yang ◽  
G Yin ◽  
...  

Author(s):  
Qiang Pan ◽  
Weidong Shi ◽  
Desheng Zhang ◽  
BPM van Esch ◽  
Ruijie Zhao

With environmental awareness growing in many countries, governments are taking measures to reduce mortality of migrating fish in pumping stations. Manufacturers seek to develop pumps that are less damaging to fish and still provide good hydraulic performance, but little is known about the implications design modifications may have on internal flow characteristics and overall hydraulic performance. In this paper, an integrated design method is proposed that combines a validated blade strike model for fish damage and a computational fluid dynamics method to assess the pump performance. A redesign of an existing, conventional, axial flow pump is presented as an example in this paper. It shows how the design of the impeller blades was modified stepwise in order to reduce fish mortality while its hydraulic performance was monitored. Computational fluid dynamics analysis of the flow near the hub of the highly skewed blades indicated that unconventional design modifications were required to ensure optimum flow behavior. In the final fish-friendly design, the risk of fish mortality has reduced considerably while the hydraulic performance of the pump is still acceptable for practical application.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Chaoyue Wang ◽  
Fujun Wang ◽  
Yuan Tang ◽  
Benhong Wang ◽  
Zhifeng Yao ◽  
...  

Abstract Stator corner separation flow existing in the guide-vane domain has significant effects on the characteristics of an axial-flow pump. The objective of this paper is to investigate the vortical structures in stator corner separation flow. Transient numerical simulation with a proof experiment was conducted for an axial-flow pump. Structural features of the vortices and their effects on velocity moment attenuation and pressure fluctuations in the guide-vane domain were analyzed. Horn-like vortices are found in the stator corner separation flow. A full cycle of the horn-like vortex evolution, “inception-growth-development-decay,” is presented. During this transit process, the vortex tube is gradually elongated and deformed, which forms an oblique separation line on the vane suction surface. High velocity moment always exists in the flow passages of the guide-vane domain, and the uniformity of main flows is gradually reduced. Meanwhile, periodic pressure fluctuations arise. The maximum amplitude of pressure fluctuations in the flow passages occurs in the region where the horn-like vortex cores at the “growth” stage lie in, which is approximately 3.39 times higher than that in the vaneless region between the impeller and guide-vane. The dominant frequency of pressure fluctuations in the flow passages is approximately 0.75 times the rotating frequency, which is close to the frequency of the full cycle of the horn-like vortex evolution. Horn-like vortices have remarkable effects on the flow fields, and more attention should be paid to them.


Sign in / Sign up

Export Citation Format

Share Document