scholarly journals A Review on the Evolution of Eigenvalue Based Spectrum Sensing Algorithms for Cognitive Radio

2016 ◽  
Vol 8 (2) ◽  
pp. 58
Author(s):  
Kishor P. Patil ◽  
Ashwini S. Lande ◽  
Mudassar H. Naikwadi

Spectrum scarcity has been encountered as a leading problem when launching new wireless services. To overcome this problem, cognitive radio is an optimistic solution. Spectrum sensing is a prominent task of cognitive radio. Over the past decade, numerous spectrum sensing algorithms have been proposed. In this paper, we present a comprehensive survey ofevolutionary achievements of eigenvalue based spectrum sensing algorithms. The correlation between signal samples due to oversampling, multipath or multiple receivers gets reflected on the eigenvalues of the covariance matrix. It has been observed that different combinations ofeigenvalues are used as test statistics and the distribution of eigenvalues and derivation of probability of detection is based on RMT (Random Matrix Theory). The main advantage offered by these algorithms is their robustness to noise uncertainty which severely affect other methods. Furthermore, they do not require accurate synchronization. These detections can be used for different signal detection applications without any prior information of signal or noise. To evaluate the performance of eigenvalue based spectrum sensing techniques under fading channels, we have simulated maximum to minimum eigenvalue based Detection(MME) and maximum eigenvalue based detection (MED) estimation for Rician fading channel. Simulation results shows that MME is much better than MED.

2020 ◽  
Vol 32 ◽  
pp. 02005
Author(s):  
Hemlata Patil ◽  
Sai Vennela Nekkanti ◽  
Disha Negi ◽  
Nikita Masanagi ◽  
Sakshi More

Cognitive Radio, which is an adaptive and intelligent radio has an important feature called spectrum sensing. It monitors the presence or absence of the authorized users in a fixed or licensed spectrum. There is a rise in the use of wireless communications in recent times, which has led to the underutilization of the available bandwidth. This problem can be solved to some extent by using cognitive radio technology. Cognitive radio gives an opportunity for unauthorized users to use the licensed spectrum, resourcefully, when not in use. Using spectrum sensing energy detection methods, the existence of authorized users, in various fading channels can be done. The operating characteristics of the receiver can be analyzed using parameters of performance like signal to noise ratio, probability of false-alarm, probability of detection. In this paper we assess Rayleigh fading channel and compare with AWGN (non- fading) channel. Theoretical and simulated results are compared, and observations are being made.


Author(s):  
Wei-Ho Chung

The cognitive radio has been widely investigated to support modern wireless applications. To exploit the spectrum vacancies in cognitive radios, the chapter considers the collaborative spectrum sensing by multiple sensor nodes in the likelihood ratio test (LRT) frameworks. In this chapter, the functions of sensors can be served through the cooperative regular nodes in the cognitive radio, or the specifically deployed sensor nodes for spectrum sensing. In the LRT, the sensors make individual decisions. These individual decisions are then transmitted to the fusion center to make the final decision, which provides better detection accuracy than the individual sensor decisions. The author provides the lowered-bounded probability of detection (LBPD) criterion as an alternative criterion to the conventional Neyman-Pearson (NP) criterion. In the LBPD criterion, the detector pursues the minimization of the probability of false alarm while maintaining the probability of detection above the pre-defined value. In cognitive radios, the LBPD criterion limits the probabilities of channel conflicts to the primary users. Under the NP and LBPD criteria, the chapter provides explicit algorithms to solve the LRT fusion rules, the probability of false alarm, and the probability of detection for the fusion center. The fusion rules generated by the algorithms are optimal under the specified criteria. In the spectrum sensing, the fading channels influence the detection accuracies. The chapter investigates the single-sensor detection and collaborative detections of multiple sensors under various fading channels and derives testing statistics of the LRT with known fading statistics.


2012 ◽  
Vol 25 (3) ◽  
pp. 235-243 ◽  
Author(s):  
Rashmi Deka ◽  
Soma Chakraborty ◽  
Sekhar Roy

Spectrum availability is becoming scarce due to the rise of number of users and rapid development in wireless environment. Cognitive radio (CR) is an intelligent radio system which uses its in-built technology to use the vacant spectrum holes for the use of another service provider. In this paper, genetic algorithm (GA) is used for the best possible space allocation to cognitive radio in the spectrum available. For spectrum reuse, two criteria have to be fulfilled - 1) probability of detection has to be maximized, and 2) probability of false alarm should be minimized. It is found that with the help of genetic algorithm the optimized result is better than without using genetic algorithm. It is necessary that the secondary user should vacate the spectrum in use when licensed users are demanding and detecting the primary users accurately by the cognitive radio. Here, bit error rate (BER) is minimized for better spectrum sensing purpose using GA.


2014 ◽  
Vol 17 (1) ◽  
pp. 17-31
Author(s):  
Tu Thanh Nguyen ◽  
Khoa Le Dang ◽  
Thu Thi Hong Nguyen ◽  
Phuong Huu Nguyen

In cognitive radio network, how to minimize the impact of secondary user on primary user’s signal plays a very important and complex role. Therefore, spectrum sensing is one of the most essential components of cognitive radio. Therefore, the effect of spectrum sensing algorithms plays a key role to the system’s performance. In this paper, we concentrate on spectrum sensing algorithms in order to find out spectrum hole or while hole for reusing it. Specifically, we will highlight the energy detector algorithm of unknown deterministic signals over fading channels. The numerical results match well with theoretical analysis. The system’s performance of energy detection in AWGN channel is acceptable in case of relatively low signal to noise ratio (SNR). However, the performance of system will be degraded remarkable over fading environments.


Author(s):  
Deepti Kakkar ◽  
Mayank Gupta ◽  
Arun Khosla ◽  
Moin Uddin

This chapter discusses the detection performance of relay based cognitive radio networks. Relays are assigned in cognitive radio networks to transmit the primary user’s signal to cognitive coordinators or CPUs, thus achieving cooperative spectrum sensing. The purpose of the chapter is to provide mathematical analysis of energy detectors for dual hop networks. The soft fusion rule is used at the relays which acts as amplify and forward relays. For the detection purpose, the energy detector is employed at the cognitive coordinator. In the ending sections, sensing performance is analyzed for different fading channels in the MATLAB environment and simulation results present comparative performance of various relay conditions with concluding remarks.


Author(s):  
Faten Mashta ◽  
Mohieddin Wainakh ◽  
Wissam Altabban

Spectrum sensing in cognitive radio has difficult and complex requirements such as requiring speed and sensing accuracy at very low SNRs. In this paper, the authors propose a novel fully blind sequential multistage spectrum sensing detector to overcome the limitations of single stage detector and make use of the advantages of each detector in each stage. In first stage, energy detection is used because of its simplicity. However, its performance decreases at low SNRs. In second and third stage, the maximum eigenvalues detector is adopted with different smoothing factor in each stage. Maximum eigenvalues detection technique provide good detection performance at low SNRs, but it requires a high computational complexity. In this technique, the probability of detection improves as the smoothing factor raises at the expense of increasing the computational complexity. The simulation results illustrate that the proposed detector has better sensing accuracy than the three individual detectors and a computational complexity lies in between the three individual complexities.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Hurmat Ali Shah ◽  
Insoo Koo

Spectrum sensing is of crucial importance in cognitive radio (CR) networks. In this paper, a reliable spectrum sensing scheme is proposed, which uses K-nearest neighbor, a machine learning algorithm. In the training phase, each CR user produces a sensing report under varying conditions and, based on a global decision, either transmits or stays silent. In the training phase the local decisions of CR users are combined through a majority voting at the fusion center and a global decision is returned to each CR user. A CR user transmits or stays silent according to the global decision and at each CR user the global decision is compared to the actual primary user activity, which is ascertained through an acknowledgment signal. In the training phase enough information about the surrounding environment, i.e., the activity of PU and the behavior of each CR to that activity, is gathered and sensing classes formed. In the classification phase, each CR user compares its current sensing report to existing sensing classes and distance vectors are calculated. Based on quantitative variables, the posterior probability of each sensing class is calculated and the sensing report is classified into either representing presence or absence of PU. The quantitative variables used for calculating the posterior probability are calculated through K-nearest neighbor algorithm. These local decisions are then combined at the fusion center using a novel decision combination scheme, which takes into account the reliability of each CR user. The CR users then transmit or stay silent according to the global decision. Simulation results show that our proposed scheme outperforms conventional spectrum sensing schemes, both in fading and in nonfading environments, where performance is evaluated using metrics such as the probability of detection, total probability of error, and the ability to exploit data transmission opportunities.


Sign in / Sign up

Export Citation Format

Share Document