scholarly journals The use of water spinach (Ipomoea aquatica) in domestic wastewater treatment

2018 ◽  
Vol 17 (03) ◽  
pp. 49-54
Author(s):  
Thinh V. D. Nguyen

The main objective of this study was to examine the efficacy and capacity of using hydroponic systems in municipal pollutant removal at household scale. Three pilot scaled hydroponic systems [dimension for each system: 4.5 m (L) x ɸ 114 mm] were installed to investigate the optimal age of vegetable, planting density and retention time for household wastewater treatment, respectively. Water spinach (Ipomoea aquatica) planted in 27 plastic cups throughout 4.5-m-length and 114-mm-diameter uPVC pipes filled with wastewater was employed as the treating agent of pollutants. The averaged influent contained proximately 32.5 mg/L suspended solids (SS), 76.0 mg/L biological oxygen demand (BOD5), 220.5 mg/L chemical oxygen demand (COD), 26 mg/L NH_4^+, 5.0 mg/L NO_3^- , and 8.5 mg/L PO_4^(3-) at pH 7.3. Results showed that a designed system consisting of 10 plants of 15-day-old water spinach pre-planted in baked clay in each cup could treat 30 L of domestic wastewater meeting the current municipal wastewater discharge standards in Vietnam (column A standards of QCVN 14:2008/BTNMT) after 4 days of wastewater retention time. If operated under conditions of the above parameters, the pilot-plant hydroponic system can achieve the removal of 65% SS, 82% BOD5, 74% COD, 90% NH_4^+, 30% NO_3^- and 86% PO_4^(3-). The result of this study has provided an applicable domestic wastewater treatment system ecofriendly and suitable for small and medium household areas.

2018 ◽  
Vol 13 (3) ◽  
pp. 542-554 ◽  
Author(s):  
Tessa van den Brand ◽  
Laura Snip ◽  
Luc Palmen ◽  
Paul Weij ◽  
Jan Sipma ◽  
...  

Abstract The application of sulfate reducing bacteria (SRB) to treat municipal wastewater is seldom considered. For instance, due to low sludge yield it can reduce the amount of excess sludge produced significantly. Several studies, mainly at laboratory-scale, revealed that SRB can proliferate in artificial wastewater systems at temperatures of 20°C and lower. So far, the application of SRB in a domestic wastewater treatment plant has been limited. Therefore, this study evaluates the proliferation of SRB at pilot-scale in a moderate climate. This study revealed that SRB were present and active in the pilot fed with domestic wastewater at 13°C, and outcompete methanogens. Stable, smooth and well-settled granule formation occurred, which is beneficial for full-scale application. In the Netherlands the sulfate concentration is usually low (<500 mg/L), therefore the application of SRB seems challenging as sulfate is limiting. Additional measurements indicated the presence of other sulfur sources, therefore higher sulfur levels were available, which makes it possible to remove more than 75% of the chemical oxygen demand (excluding sulfide) based on SRB activity. The beneficial application of SRB to domestic wastewater treatment might therefore be valid for more locations than initially expected.


2018 ◽  
Vol 13 (3) ◽  
pp. 457-464
Author(s):  
PRIYANAND AGALE ◽  
PARAG SADGIR

Rural wastewater treatment is mostly ignored in developing and undeveloped countries. The most important barrier for addressing to this problem is cost of treatment and simplified technology. Aerobic Brickbat Grit Sand (ABGS) purifier consists of four stages. Wastewater flows gravitationally through partition walls in zigzag pattern with brick bats filter; Pebble sand filter and charcoal and grit filter which facilitate removal of contaminants from domestic wastewater. In the present study, experimental model for domestic wastewater treatment was setup in the Environmental Engineering laboratory at Government College of Engineering Aurangabad, Maharashtra. Physiochemical analysis was done in August and September of 2016 the percentage removal of contaminants results shows Biological Oxygen Demand (BOD) 92% - 87%, Chemical Oxygen Demand (COD) 93 - 89%, Total Suspended Solids( TSS) 80 - 78% and Turbidity 95 - 85%. The process is considered eco-friendly and easy to install technology for domestic wastewater treatment with use of locally available material. ABGS purifier is decentralized approach of domestic wastewater treatment. Hence ABGS as an alternative solution to tackle over the problem of rural wastewater treatment.


2012 ◽  
Vol 455-456 ◽  
pp. 1030-1036
Author(s):  
Hui Zhou Yuan ◽  
Jian Bang Zhao ◽  
Shui Zhou Ke

This paper studied on the treatment of urban domestic wastewater with Anaerobic MBBR in the tropical and subtropical areas in the South of China. The emphasis focused on the effects of the Hydraulic Retention Time (HRT) and pH value to the CODCrconcentration and the NH3-N concentration of the outflow of the reactor. Moreover, the mechanism of denitrification was also explored. The results showed that the mechanism of denitrification of the reactor was found. When HRT was equal to or more than 8h, NH3-N was reduced mainly in the way of short-cut nitrification and denitrification. When HRT was less than 8h, the reactions of short-cut nitrification and denitrification & anaerobic ammonia oxidation both existed in the reactor.


2008 ◽  
Vol 62 (5) ◽  
Author(s):  
Lucia Dančová ◽  
Igor Bodík ◽  
Andrea Blšťáková ◽  
Zuzana Jakubčová ◽  
Miloslav Drtil

AbstractPossibilities of membrane technology and the use of membrane processes in wastewater treatment were investigated. The main focus was the monitoring of the starting phase of a domestic wastewater treatment plant. Experimental part of the study was realized at the municipal wastewater treatment plant (WWTP) Devínska Nová Ves — Bratislava during the period from February 2005 to September 2006. The system was stable without any external chemical treatment of the membrane modules and the permeate quality was very high. Observed decrease of COD and BOD5 values ranged between 91 % and 98 %. The process of nitrification was very successful considering its high efficiency (> 95 %).


TAYACAJA ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 22-28
Author(s):  
Adiel Álvarez Ticllasuca ◽  
Marco Curasma Matamoros ◽  
Estefani Sandoval Condori ◽  
Fernando Toribio Román

In this research removal efficiency was evaluated of organic pollutants of a biofilm and phytoremediation integrated system for municipal wastewater treatment in Huancavelica. A pilot plant consisting of a settler was installed that also retained oils and fats, a biological filter using as support material the calcareous stuff and a phytoremediation process with Nasturtium officinale (watercress) The hydraulic retention time was 5.5 hours and the flowrate of 0.011 L s -1, the evaluation was made of the proper functioning of processes by monitoring control parameters. The pollutant removal efficiency was determined by Student's "t" test (p <0.05). An average pH value of 7.57 and a temperature of 12.07 ° C were obtained, subsequently the measurement of BOD5 was initiated, obtaining maximum effluent values of 131 ppm and minimum values of 45 ppm and a removal efficiency of 44.8% was obtained, for COD. In total coliforms, fecal coliforms and Escherichia coli the removal was 66.67%, 94.59%, 81.22% and 72.12% respectively, oil and fat analysis was also performed and total suspended solids, however high removal efficiency was not obtained. It is concluded that the parameters of BOD5 and COD comply with the MPL for the effluents of municipal domestic wastewater treatment plants, while the rest of the parameters analyzed do not comply with the regulations. however high removal efficiency was not obtained. It is concluded that the parameters of BOD5 and COD comply with the MPL for the effluents of municipal domestic wastewater treatment plants, while the rest of the parameters analyzed do not comply with the regulations. however high removal efficiency was not obtained. It is concluded that the parameters of BOD5 and COD comply with the MPL for the effluents of municipal domestic wastewater treatment plants, while the rest of the parameters analyzed do not comply with the regulations.


2021 ◽  
Vol 894 (1) ◽  
pp. 012032
Author(s):  
A Magfhira ◽  
P Kinasih ◽  
D Salsabila ◽  
E Marchella ◽  
M F Fachrul

Abstract The purpose of writing this scientific paper is to analyze more deeply the management of the quality of the aquatic environment, especially regarding the treatment of domestic wastewater on a household scale. Domestic wastewater treatment with a constructed land system using Air Fern (Azolla pinnata) is expected to reduce concentration parameters such as BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand), and Ammonia. The growth rate of Air Fern (Azolla pinnata) after acclimatization is quite good so that it can reduce BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand) and Ammonia, which are a source of nutrients for plant growth so that it can be used as a promising material for plant growth. It can be used as a promising material for plant growth domestic wastewater treatment. The analysis was carried out using the blended concept, a combination of virtual, online, and laboratory/field activities (offline/outside the network) while still paying attention to health protocols. The priority of this literature study research is to provide input for the government in the form of alternative solutions for managing the quality of the aquatic environment, especially regarding domestic wastewater treatment on a household scale. In addition, this research also supports the international Sustainable Development Goals (SDGs) program: Goal 6: Access to Clean Water and Sanitation” in point 3, namely “Improving water quality by reducing pollution, eliminating waste disposal, and minimizing the disposal of chemicals and hazardous materials, halving the proportion of untreated wastewater and substantially increasing recycling and safe reuse globally”. This research can contribute to appropriate technology in environmental biotechnology, namely wastewater treatment with a system that has simple technology, low cost, energy-saving and is environmentally friendly, which can create a level of hygiene and comfort for the community and maintain environmental sustainability future.


2011 ◽  
Vol 64 (12) ◽  
pp. 2376-2380 ◽  
Author(s):  
Suwasa Kantawanichkul ◽  
Wanida Duangjaisak

The experiments were conducted in four concrete laboratory scale free water surface constructed wetland units 1 m wide, 1.5 m long and 0.8 m deep. Paddy field soil was added to a depth of 0.4 m and rice seedlings (Oryza sativa L.) were transplanted into the units at a density of 25 plants/m2. Domestic wastewater collected from Chiang Mai University was applied into each unit via two different modes to evaluate suitable conditions for wastewater treatment and rice yield. In the first experiment, the wastewater was fed intermittently (7 h/day) with a hydraulic loading rate of 2, 4, 6 and 8 cm/day. The maximum removal efficiencies for chemical oxygen demand, biological oxygen demand, total kjedahl nitrogen and suspended solids were only 49.1, 58.7, 64.0 and 59.4%, respectively, due to the short hydraulic retention time for the biodegradation of organic substances. In the second experiment, the wastewater in each unit was inundated to a depth of 15 cm for 10, 15, 20 and 25 days in each unit and then drained and re-flooded. Removal efficiencies of chemical oxygen demand, biological oxygen demand, total kjedahl nitrogen and suspended solids were greater than in the first experiment especially at the 25 day retention time and except for suspended solids met the Thai national effluent standard. The study revealed that apart from wastewater treatment, wastewater can replace natural water to grow rice in the dry season or throughout the year. Moreover, nutrients in wastewater can be a substitute for chemical fertilizers. Rice grain production was 4,700 kg/ha and only 6% less than the production from the conventional paddy field.


2013 ◽  
Vol 838-841 ◽  
pp. 2739-2744
Author(s):  
Shuang Zhao ◽  
Cui Ping Wang

A novel process for improving the energy use and treatment efficiency of the biological nitrogen removal process, up-flow microaerobic-oxic (M/O) process which is composed of up-flow micro-aerobic and aeration was proposed based on a laboratory scale for domestic wastewater treatment, the dissolved oxygen (DO) in up-flow micro-aerobic was in the range of (0~0.5) mg/L. The M/O process performance under different hydraulic retention time (HRT) and Internal return ratio (r) was investigated. Under the optimal conditions, the average removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN) and ammonium nitrogen (NH4+-N) were 89.1%, 64.1%, and 96.6 % with effluent concentrations of COD, TN and NH4+-N less than 50,15 and 8mg/L, respectively. The distribution of sludge particles diameter and microbial activity of activated sludge were also measured, the mean particle diameter was in the range of 180~250μm and the SOURT was 13.11 mgO2/(gMLVSSh). Up-flow micro-aerobic (M/O) reactor has the advantages of more stable performance and better resistance to the load shock than the conventional A/O process within continuous running period of 130 days.


2014 ◽  
Vol 955-959 ◽  
pp. 2526-2529 ◽  
Author(s):  
John Leju Celestino Ladu ◽  
Xi Wu Lu ◽  
Ahmed Mohammed Osman

This paper examined the treatment of rural domestic wastewater. Influent and effluent samples were experimented for Chemical oxygen demand (COD), NH4+-N, NO3--N and TP in the Taihu Lake Environmental laboratory of Southeast University in Wuxi. Different hydraulic retention time (HRT) and recycle ratios were applied to appraise their influence on removal efficiency. The wastewater temperature was controlled between 20 to 24°C and pH ranges 7.6 – 8.1. The result revealed average COD, NH4+-N, NO3--N and TP removal efficiencies of 77.2, 74.1, 94 and 83% with optimum HRT of 3hrs and recycle ratio of 2 respectively. The obtained results confirmed that, the integrated processes of anoxic/oxic bioreactor and artificial wetland was viable and proficient in domestic wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document