Advantage of Sorafenib Combined with Radiofrequency Ablation for Treatment of Hepatocellular Carcinoma

2016 ◽  
Vol 103 (3) ◽  
pp. 286-291 ◽  
Author(s):  
Zhe Tang ◽  
Muxing Kang ◽  
Bo Zhang ◽  
Jianke Chen ◽  
Heqing Fang ◽  
...  

Background Hepatocellular carcinoma (HCC) is a leading cause of death worldwide. Among the surgical and nonsurgical treatments available, radiofrequency ablation (RFA) and sorafenib have been shown to have efficacy. There is little evidence whether combination of these therapies would have additional benefits. Methods In a mouse model of HCC, effects of sorafenib were determined by tumor size, RFA-induced necrosis area (triphenyltetrazolium chloride staining), microvascular density (MVD; 4’,6-diamidino-2-phenylindole and anti-CD31 antibody staining), and tumor perfusion (magnetic resonance imaging). Results The RFA-induced necrosis area was 80.98 ± 9.14 and 69.49 ± 7.46 mm2 in mice administered 80 and 40 mg/kg sorafenib, respectively, but only 57.29 ± 3.39 mm2 in controls. Sorafenib also reduced tumor volume and enhanced RFA-induced tumor destruction in a dose-dependent manner, and reduced both MVD and tumor perfusion. Conclusions The results of our study suggest a potential role for combining RFA with sorafenib for treatment of HCC. Sorafenib could enhance RFA efficiency, possibly through its angiogenesis suppressive effects.

2018 ◽  
Vol 5 (4) ◽  
pp. 23
Author(s):  
Bolandpayeh M ◽  
Hassanpour-Ezzati M ◽  
Mousavi Z

Introduction: Enoxaparin is an anticoagulant medication. Anticoagulation inhibits tumor cell-mediated release of angiogenic proteins and diminishes angiogenic response. Angiogenesis is an important event in various cancers such as breast cancer. Angiogenesis provide oxygen and nutrients to tumor cells and causes tumor progression. The aim of the present study was to evaluate the anti-angiogenesis effect of an enoxaparin cream on breast cancer induced by dimethylbenzanthracene in rats. Methods: In this experimental in vivo study, 50 Wistar female rats were divided into negative control (vehicle), positive control (cream base), and 3 groups with enoxaparin treatment (40, 60, and 80 mg/ml). After one month of treatment along with breast cancer induction by dimethylbenzanthracene, breast tissue samples were isolated and stained with hematoxylin-eosin, and tumor growth suppression rate was calculated. Tumor size (length and width) was measured using a clipper, and the tumor volume was calculated using the following formula: V = (L × W × W)/2, where V is tumor volume, W is tumor width, L is tumor length. The data were analyzed using one-way ANOVA and Tukey’s post hoc test. Results: Tumor suppression was significantly increased in enoxaparin treatment groups compared to the positive control group (40 mg/ml of enoxaparin treated versus positive control group; P = 0.017, 60 mg/ml of enoxaparin treated versus positive control; P = 0.015, 40 mg/ml of enoxaparin treated versus positive control; P = 0.009, 60 mg/ml of enoxaparin treated versus 40 mg/ml of enoxaparin treated; P = 0.019, and 80 mg/ml of enoxaparin treated versus 40 mg/ml of enoxaparin treated; P = 0.011 in a dose-dependent manner. Conclusion: Enoxaparin inhibits breast cancer in a dose-dependent manner. The application of enoxaparin cream in patients with breast cancer may considerably reduce tumor growth. 


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Qing Ye ◽  
Shukui Qin ◽  
Yanhong Liu ◽  
Jundong Feng ◽  
Qiong Wu ◽  
...  

To investigate the effect of endostar on specific angiogenesis induced by human hepatocellular carcinoma, this research systematically elucidated the inhibitory effect on HepG2-induced angiogenesis by endostar from 50 ng/mL to 50000 ng/mL. We employed fluorescence quantitative Boyden chamber analysis, wound-healing assay, flow cytometry examination using a coculture system, quantitative analysis of tube formation, andin vivoMatrigel plug assay induced by HCC conditioned media (HCM) and HepG2 compared with normal hepatocyte conditioned media (NCM) and L02. Then, we found that endostar as a tumor angiogenesis inhibitor could potently inhibit human umbilical vein endothelial cell (HUVEC) migration in response to HCM after four- to six-hour action, inhibit HCM-induced HUVEC migration to the lesion part in a dose-dependent manner between 50 ng/mL and 5000 ng/mL at 24 hours, and reduce HUVEC proliferation in a dose-dependent fashion. Endostar inhibited HepG2-induced tube formation of HUVECs which peaked at 50 ng/mL.In vivoMatrigel plug formation was also significantly reduced by endostar in HepG2 inducing system rather than in L02 inducing system. It could be concluded that, at cell level, endostar inhibited the angiogenesis-related biological behaviors of HUVEC in response to HCC, including migration, adhesion proliferation, and tube formation. At animal level, endostar inhibited the angiogenesis in response to HCC in Matrigel matrix.


2001 ◽  
Vol 29 (01) ◽  
pp. 161-172 ◽  
Author(s):  
Lii-Tzu Wu ◽  
Jing-Gung Chung ◽  
Jung-Chou Chen ◽  
Wei Tsauer

The inhibition of arylamine N-acetyltransferase (NAT) activity by norcantharidin (NCTD), the demethylated form of cantharidin, in human hepatocellular carcinoma HepG2 cells was investigated. By using high performance liquid chromatography, NAT activity on acetylation of 2-aminofluorene (AF) and p-aminobenzoic acid (PABA) were examined. Two assay system were performed, one with cellular cytosols, the other with intact HepG2 cell suspensions. The NAT activity in HepG2 cell line was inhibited by norcantharidin in a dose-dependent manner in both types of examined systems: i.e. the greater the concentration of norcantharidin in the reaction, the greater the inhibition of NAT activities. This report is the first to show that norcantharidin has an inhibitory effect on NAT activity in HepG2 cell.


Gut ◽  
2012 ◽  
Vol 62 (4) ◽  
pp. 606-615 ◽  
Author(s):  
Hsiao-Ping Chen ◽  
Jeng-Jer Shieh ◽  
Chia-Che Chang ◽  
Tzu-Ting Chen ◽  
Jaw-Town Lin ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4888-4888
Author(s):  
Li Long ◽  
Xia Tong ◽  
Montesa Patawaran ◽  
Lea Aukerman ◽  
Bahija Jallal ◽  
...  

Abstract CD40 is expressed on most B cell malignancies including multiple myeloma and represents an attractive target for antibody therapy. We have generated a novel, highly potent, fully human antagonistic anti-CD40 monoclonal antibody, CHIR-12.12, using XenoMouse® mice (Abgenix, Inc). The antibody can mediate anti-tumor activity potentially by at least two mechanisms: CHIR-12.12 can block CD40-ligand mediated survival signals and it can lyse tumor cells by antibody-dependent cellular cytotoxicity (ADCC). We have previously reported that CHIR-12.12 mediates stronger killing of CD40- and CD20-expressing lymphoma cells than rituximab by ADCC in vitro and significantly inhibits the growth of both rituximab-responsive and rituximab-resistant human lymphoma xenografts in vivo. In this study, we examined in vitro and in vivo efficacy of CHIR-12.12 against human multiple myeloma. The human MM cell line IM-9, which expresses both CD40 and CD20, the target antigen for CHIR-12.12 and rituximab respectively was used for the study. CHIR-12.12 induced lysis of target tumor cells by ADCC in a dose dependent manner reaching maximum cell lysis at 0.1ug/ml concentration. The maximum specific lysis of IM-9 cells by CHIR-12.12 was greater than the lysis induced by rituximab (64% vs 45 %, n=3, p<0.01). In addition, the EC50 of CHIR-12.12 was on average 5.9 picomolar, which was 10-fold lower than the EC50 of rituximab. Greater ADCC by CHIR-12.12 was not due to higher density of CD40 molecules on the target tumor cells compared to CD20 molecules. IM-9 cells expressed 35590 ±8858 CD40 molecules compared to 93783 ± 2247 CD20 molecules. The in vivo CHIR-12.12 efficacy was then evaluated in IM-9 xenograft model. In an un-staged conditional survival model, where treatment began one day after intravenous inoculation of IM-9 tumor cells, CHIR-12.12 significantly prolonged the survival of tumor-bearing mice in a dose-dependent manner with 60% survival in the 0.1 mg/kg CHIR-12.12 treated group and 80% survival in the 1 and 10 mg/kg groups respectively on day 56 (Log Rank Test: P<0.01 and P<0.001, respectively). All animals in the control IgG1 and bortezomib treated groups were terminated between day 18 and day 26 due to severe disease related to tumor development (i.e., hind limb paralysis and significant body weight loss). In a staged subcutaneous model, where treatment began once the tumor volume was 150–200mm3, CHIR-12.12 administered weekly at 0.1, 1 and 10 mg/kg significantly inhibited tumor growth with a tumor volume reduction of 17% (P>0.05), 34% (P<0.01) and 44% (P<0.001) respectively. Bortezomib, when tested at 0.5 mg/kg twice a week did not inhibit tumor growth. At the maximally tolerated dose (MTD) of 1 mg/kg twice a week, bortezomib inhibited tumor growth by 30% (P<0.01). Taken together, these data demonstrate that the anti-CD40 mAb CHIR-12.12 has potent activity against human multiple myeloma in vitro and xenograft models in vivo.


2001 ◽  
Vol 358 (2) ◽  
pp. 335-342 ◽  
Author(s):  
Nathalie MERCIER ◽  
Marthe MOLDES ◽  
Khadija EL HADRI ◽  
Bruno FÈVE

Semicarbazide-sensitive amine oxidase (SSAO) is an amine oxidase related to the copper-containing amine oxidase family. The tissular form of SSAO is located at the plasma membrane, and is mainly expressed in vascular smooth muscle cells and adipocytes. Recent studies have suggested that SSAO could activate glucose transport in fat cells. In the present work, we investigated the potential role of a chronic SSAO activation on adipocyte maturation of the 3T3-L1 pre-adipose cell line. Exposure of post-confluent 3T3-L1 pre-adipocytes to methylamine, a physiological substrate of SSAO, promoted adipocyte differentiation in a time- and dose-dependent manner. This effect could be related to SSAO activation, since it was antagonized in the presence of the SSAO inhibitor semicarbazide, but not in the presence of the monoamine oxidase inhibitor pargyline. In addition, methylamine-induced adipocyte maturation was mimicked by 3T3-L1 cell treatment with other SSAO substrates. Finally, the large reversion of methylamine action by catalase indicated that hydrogen peroxide generated by SSAO was involved, at least in part, in the modulation of adipocyte maturation. Taken together, our results suggest that SSAO may contribute to the control of adipose tissue development.


2012 ◽  
Vol 142 (5) ◽  
pp. S-920 ◽  
Author(s):  
Chun-Ying Wu ◽  
Hsiao-Ping Chen ◽  
Tzu-Ting Chen ◽  
Jaw-Town Lin ◽  
Ming-Shiang Wu

Sign in / Sign up

Export Citation Format

Share Document